
Chapter 10

IIS

As you well know, not everyone on the Internet runs
Windows. There are many other platforms that can be
reached across the Internet that have absolutely no idea
how to send or receive DCOM packets. Because of the
vast commercial enterprises farming the Internet using
HTTP, and the vast numbers of consumers who want to
jump on the fabled information superhighway, an incred-
ible amount of research, development, and most impor-
tantly, standardization has gone into hardware and
software for making HTTP sing on just about any plat-
form you can imagine. Most pagers these days can
access the Web. There are refrigerators in the works that
will automatically order groceries over the Internet when
your supplies are running low. If you want to tap this
well, you have to buy into HTTP and Web server tech-
nology, and if you want to secure your transactions, you
have to learn ways of authenticating in the face of fire-
walls and an incredible variety of client platforms.

435

brown10.qxd 7/5/00 11:38 AM Page 435

This chapter is all about putting a Web front end on your COM+ distributed
application. You’ll find that there is virtually no code in this chapter, because
the job is mainly an administrative task (I assume you already know how to pro-
gram ISAPI, ASP, or CGI apps). If this chapter does its job, by the time you’re
done reading it you’ll feel more comfortable working with Internet Information
Server (IIS) because you’ll have a more clear understanding of the security con-
text that your application will be running in given any particular configuration.
(There are so many different configuration options that it’s easy to become con-
fused, and this often leads to a general sense of unease.) The chapter begins
by explaining how authentication works on the Web using public key cryptog-
raphy and certificates, then works through the various client authentication
options, and ends by providing some tips to help you use IIS as a gateway into
a COM+ application.

Authentication on the Web
When you go online and plan a trip, you typically send sensitive information
across the wire, such as information about where you’re going to be and spe-
cial needs that you might have; often you’ll even send your credit card number
across the wire to purchase tickets or reserve a room or a rental car. It’s amaz-
ing to me that so many people are willing to do this without understanding how
their conversations are secured. Most consumers who care about security look
for the little key in Netscape’s Communicator or the little padlock in Microsoft’s
Internet Explorer (IE) and feel comfortable that these conversations are being
encrypted so that a bad guy cannot see this sensitive information. But what’s
the point of encrypting a message if you don’t know who you’re sending the
message to? How do you know that it’s really Amazon.com on the other end of
the wire and not a bad guy? I’m pretty confident that Jeff Bezos doesn’t have
lunch with each and every Amazon customer and exchange a secret passphrase
that can later be used to generate session keys. What we need is some form of
authentication that scales to the global Internet.

Chapter 7 described in reasonable detail a couple of authentication proto-
cols that can be used to prove the identity of one principal to another electron-
ically: NTLM and Kerberos. Can we apply either of these technologies to this
particular problem?

DISTRIBUTION436

brown10.qxd 7/5/00 11:38 AM Page 436

Consider NTLM. NTLM is all about proving the identity of the client to
the server, which is usually satisfactory in a controlled environment such as a
single business. The client is never cryptographically assured of the server’s
identity, but it’s also much harder for internal servers to be spoofed than it is
on the Internet at large. On the Web, where compromise of a router is a much
more likely scenario, the focus reverses and protecting the consumer from
spoofed servers is of critical importance. E-commerce sites typically still need
to have some form of client authentication, but often this is as simple as corre-
lating a credit card number with a billing address. Client authentication is
pushed off to the credit card authority. Even if we were to reverse NTLM so
that the client challenges the server, this requires the server to have a shared
secret with each client (or that client’s authority), which is pretty much equiv-
alent to having the CEO of Amazon.com whisper a shared passphrase in your
ear at lunch.

What about Kerberos? Kerberos has specific provisions for mutual authen-
tication. The client can in fact verify the identity of the server during the authen-
tication handshake, and any information that the client encrypts with the
resulting session key and sends to the server is only useful to the one true server
with which the client originally authenticated, because that server also knows
the session key and can decrypt the incoming message.

When it comes to scalability, Kerberos is certainly a move in the right direc-
tion; by issuing tickets that have an expiration time on the order of ten hours,
we reduce the load on the authority significantly, as opposed to a protocol such
as NTLM, where the authority must be contacted for each authentication
request.

So why doesn’t Amazon.com use Kerberos to prove its identity to its clients?
Well, when used in the conventional way, Kerberos requires the client to prove
his or her identity to the server. Having the server prove its identity to the client
is a nifty optional feature of Kerberos, but this doesn’t help Amazon.com, who
would now be forced to cryptographically authenticate each and every client,
which once again puts Amazon.com in the business of whispering secrets to
clients on lunch breaks.

However, what if we were to use Kerberos in reverse? Perhaps the server
could present a ticket to the client to prove the server’s identity, as opposed to

IIS 437

brown10.qxd 7/5/00 11:38 AM Page 437

the other way around. Figure 10.1 shows how this might work. The client
makes a request to the server, and the server sends a ticket plus an authenti-
cator to the client to verify its identity. The ticket contains the server’s name, an
expiration date, and a key that the client and server can use to secure their con-
versations. This information was encrypted by the authority (not the server), so
as long as the client trusts that authority, she’ll trust that the ticket was not
forged. If the client can decrypt this information (checking the authenticator to
make sure the server really sent this message and that it wasn’t stolen or
replayed), she can happily use the key in the ticket to send confidential mes-
sages to the server.

Look at all the good ideas we’ve been able to leverage from Kerberos:
Kerberos tickets do contain a key that can be used to establish an encrypted
session, and they do contain an expiration date that helps make the authenti-
cation protocol scale better than something like NTLM, and they do have the
notion of ownership (the server’s name is in the ticket and anyone who purports
to be the server must prove knowledge of the secret key associated with the
ticket). The glaring problem is that the ticket also has a fixed target (in our case,
the target is the client). If Amazon.com wants to prove its identity to Alice, it
must obtain a ticket targeted at Alice. If Amazon.com wants to prove its iden-
tity to Mary, it must obtain a ticket targeted at Mary. This means that everyone

DISTRIBUTION438

Authenticator
encrypted with

session key

Kerberos
ticket encrypted

by authority
with Alice’s key

Web server (Bob)

Client (Alice)

session key
cname = Bob

cname = Bob
ctime = 14:53:00

Figure 10.1 Kerberos in reverse?

brown10.qxd 7/5/00 11:38 AM Page 438

must register with a Kerberos authority, even clients. A client cannot simply be
an anonymous Internet user and have any chance of verifying a server’s iden-
tity using this scheme.

Why does this limitation exist? Because the Kerberos KDC relies entirely on
conventional cryptography to prove the origin of its tickets. Using the reverse-
Kerberos scheme that I’ve concocted, when Alice receives a ticket from
Amazon.com, that ticket is encrypted with a secret key shared by Alice and the
authority. The only reason Alice trusts the contents of the ticket is that she can
decrypt it successfully, and thus she knows it came from her authority. It’s not
feasible at all to have Amazon.com (or its Kerberos authority) register as a prin-
cipal with every client’s authority on the Internet in order to weave a chain of
secret keys across the Web. It just won’t scale (once again, we’ve resorted to
whispering secrets).

If, on the other hand, there were some way for an authority to encrypt a
ticket with a special private key in such a way that anyone could decrypt it
using a different key that was not a secret (but instead was a well-known
value), we’d be just about half-way to a solution. When Alice receives this ticket
from Amazon.com, if she can decrypt it with the well-known key for the author-
ity, she will trust that the contents were really produced by that authority.

This doesn’t completely solve the problem, though. If anyone in the world
can decrypt the ticket with the authority’s well-known key, this also means that
anyone can see the secret key inside that Alice will use to encrypt data that she
sends to Amazon.com. These sorts of tickets cannot hold secrets. So instead of
a secret, the authority can put a well-known key for Amazon.com in the ticket.
Similar to the key the authority used to encrypt the ticket, anyone can use this
well-known key to encrypt a message, but only Amazon.com knows the cor-
responding private key to decrypt that message. In this scenario, the ticket
doesn’t need to be encrypted at all because it holds no secrets. Instead, the
authority could simply sign the ticket using the special private key I mentioned
earlier. Anyone in the world who trusts that authority could then verify this sig-
nature using the authority’s well-known key.

This seemingly bizarre idea for a cryptosystem in which two paired keys are
used (one public and one private) was invented in the mid-1970s by Whitfield

IIS 439

brown10.qxd 7/5/00 11:38 AM Page 439

Diffie,1 and it’s known as public key cryptography. The tickets we’re talking
about now are no longer Kerberos tickets, but rather digital certificates.

Public Key Cryptography
Without going into the mathematics involved in making it work,2 the idea
behind public key cryptography is quite simple. Instead of having a single secret
key that can be used for encryption and decryption, the key is split into two
parts: a public key and a private key. Only a single entity knows the private key,
but the public key is just that—public. Most public key cryptosystems work in
the following way: If you encrypt some plaintext with key A, you can only
decrypt the resulting ciphertext with key B (see Figure 10.2). Because two dif-
ferent keys must be used for encryption and decryption, public key algorithms
are also known as asymmetric algorithms, whereas conventional cryptosystems
that use a single key are known as symmetric algorithms.

Here’s an example of a public key algorithm. In DSA (the Digital Signature
Algorithm3), key A is a private key and key B is the corresponding public key.
This means that only one person can encrypt the plaintext into ciphertext,

DISTRIBUTION440

1 As far as us civilians know, at least. It’s entirely possible that this technology had been discov-
ered years before by a major government; this is one sort of discovery that a government would
want to keep to itself.
2 See Schneier (1996) for an approachable introduction to the math.
3 Part of the DSS (Digital Signature Standard) specification.

Encrypt with
key A

Decrypt with
key B

Plaintext PlaintextCiphertext

Figure 10.2 Public key cryptography

brown10.qxd 7/5/00 11:38 AM Page 440

but many people can decrypt it. Clearly this method cannot be used to send
secrets, because anyone with the public key can decrypt the ciphertext, but this
sort of mechanism is exactly what is required for signatures. By calculating
a one-way hash of some plaintext and encrypting that hash with a private key,
anyone who knows the corresponding public key can verify the signature. After
verifying a digital signature of this type, you know that the plaintext wasn’t
tampered with since it was originally signed, and you know that the only entity
that could have created the signature was the one who knows the associated
private key.

By far the most well-known digital signature algorithm is RSA, named after
its inventors, Rivest, Shamir, and Adleman. This algorithm can be used to
create digital signatures as with DSA, but it can also be used to send secrets.
In this mode, we reverse the way the keys are used so that anyone who
knows the public key can encrypt a block of plaintext, but only the holder of
the private key can decrypt the resulting ciphertext. What’s convenient about
RSA is that it works both ways: The same algorithm can be used to encrypt
secrets as well as create signatures by reversing the way the keys are used (see
Figure 10.3).4

One thing that stands out about asymmetric algorithms is that although they
are great for producing and verifying signatures for which only a hash
value needs to be encrypted or decrypted (a hash value is typically between
128 and 256 bits of data), they are really poor performers for encrypting bulk
data. Symmetric algorithms are hundreds of times faster at bulk encryption. In
practice, if Alice wants to send an encrypted message to Bob leveraging
his public key, she can do something as simple as generating a random con-
ventional key and sending it to Bob encrypted with his public key. She can
then send Bob as much data as she likes, and encrypt it using a symmetric
algorithm. Thus in practice, public keys are used for two different purposes:
generating digital signatures and exchanging symmetric keys (also known as
session keys).

IIS 441

4 Although it’s a bad idea to use the same key pair to do both; usually one key pair is used for sig-
natures and another is used for encryption (Schneier 1996).

brown10.qxd 7/5/00 11:38 AM Page 441

Certificates
I remember that when I first learned about public key cryptography, I initially
thought it was the silver bullet that would solve all key exchange problems.
What I quickly realized, however, was that when used properly it can lead to a
more scalable cryptosystem, but that key exchange is still hard.

With a conventional cryptosystem, all keys are secret keys. When the KDC
constructs a Kerberos ticket and embeds a session key inside, the contents of
that ticket must be carefully encrypted so that a bad guy cannot discover the
embedded session key. This also means that if a bad guy were to tamper with
the ticket, in an attempt to change the session key to a value he or she knows,
the server receiving the ticket would detect this because the ticket would not

DISTRIBUTION442

Encrypt with
Bob’s key to
create a signature

private

Decrypt with
Bobs’ key to
verify the signature

public

Plaintext

Plaintext

Ciphertext

Plaintext

Many people
can verify

Bob’s signature

Bob can
create a
signature

Ciphertext

Ciphertext

Encrypt with
Bob’s key to

seal a secret
public

Plaintext

Plaintext

Many people can
send encrypted secrets
using Bob’s public key

Decrypt with
Bob’s key to

unseal a secret
private

Plaintext

Plaintext

Only Bob
can decrypt

those secrets

Figure 10.3 RSA encryption and signature generation

brown10.qxd 7/5/00 11:38 AM Page 442

decrypt properly. (The results would be a garbled mess, and Kerberos imple-
mentations watch for this sort of funny business.)

However, when you send your public key across the wire, it’s tempting to
think that it doesn’t need any protection. Granted, it’s not a secret, so you don’t
need to hide it as Kerberos hides its session keys inside tickets, but imagine
what would happen if a bad guy were to tamper with the key in transit. If Bob
sent his public key to Alice, and Fred intercepted that message and replaced
Bob’s public key with his own before sending the message on to Alice, any
secrets that Alice subsequently sent to Bob using the compromised key would
be readable by Fred. Granted, if Bob receives any of these messages directly, if
he’s paying any attention at all he’ll see that they decrypt to complete gibber-
ish (only Fred can successfully decrypt messages encrypted with his own pub-
lic key), but if Fred has hijacked a router between Alice and Bob, it’s all over.
Fred can simply intercept each of Alice’s encrypted messages, decrypt them,
read them, modify them to his liking, and then encrypt them using Bob’s real
public key. Neither Alice nor Bob will have a clue that Fred is in the middle. If
Bob also asks Alice for her public signature key, Fred can substitute his own key;
now Fred will be able to sign messages to Bob, and Bob will be tricked into
thinking that Alice was the signer (Figure 10.4 shows the scam). The crux of
the problem is that in order for Alice or Bob to be able to safely use public keys

IIS 443

Bob

I’ve got Alice’s
public key . . .

Alice

I’ve got Bob’s
public key . . .

Fred’s public key Fred’s public key

Message decrypts fine,
signature checks out;

OK, this message must be
from Alice, and nobody

saw it or tampered
with it

(whoops!)

Buahahaha!

Fred

Alice’s public key
Bob’s public key

Hey Bob, this is
Alice; it’s a go!

Alice’s
signature

Encrypted
with Fred’s
public key
(whoops!)

Encrypted
with Alice’s
private key

Hey Bob, this is
Alice; call it off!

Fred’s
signature

Encrypted
with Bob’s
public key

Encrypted
with Fred’s
private key!

Figure 10.4 The “Fred in the middle” attack

brown10.qxd 7/5/00 11:38 AM Page 443

that they receive electronically, they must have some way to verify the identity
of the person who owns the corresponding private key.

Can’t Bob just sign the key he sends to Alice, so that Alice can verify that
it really came from Bob? This is like asking which came first, the chicken or the
egg. Alice can’t verify any of Bob’s signatures until she obtains his public sig-
nature key, and how will she ever verify that key? The point that I’m trying
to drive home here is that secure key exchange is just plain hard, even with
public keys (which are not secrets). Two popular solutions to the problem are
as follows:

1. Exchange initial public keys with your friends (even face to face if nec-
essary) so that Fred can’t get in the middle. Then treat those friends
as trusted authorities. This is the model used by PGP (Pretty Good
Privacy).

2. Use a hierarchy of trusted authorities. This is the model used by
X.509.

PGP and Cumulative Trust
Here’s the idea behind PGP in a nutshell: Alice and Bob are friends, so they
exchange public keys simply by sending them via email, but then they meet at
lunch (or call each other on the phone) and authenticate those keys. The way
this is done is quite simple. For instance, for Alice to verify Bob’s public key,
she calculates a hash of the key she received in the mail, and Bob takes a hash
of the key he sent. Alice then reads the hash value aloud (either over the phone
or over a ham sandwich). Now that they trust the validity of each other’s keys,
in the future, Alice and Bob can sign or seal packets that they send to one
another. If Bob wants to introduce Alice to Mary, he can send Alice a signed
message containing Mary’s public key, and Alice, because she trusts Bob, adds
this key to her “keyring” (presumably Bob met Mary face to face or obtained her
key electronically from someone he trusts and with whom he had previously
exchanged keys). This “web of trust” expands into a community of users who
trust one another’s public keys.5

DISTRIBUTION444

5 This is tremendously simplified, of course. See Zimmerman (1995) for more detail.

brown10.qxd 7/5/00 11:38 AM Page 444

Each public key that Alice receives electronically from Bob comes wrapped
in a tight little package called a certificate. The certificate contains a public key
along with (typically) an email address identifying the owner of that public key,
plus an expiration date; the contents are signed with Bob’s private key. Bob in
this case is the certifying authority. Because Alice trusts Bob, when she vali-
dates his signature she develops trust in Mary’s public key.

X.509 and Hierarchical Trust
The X.509 model of trust asserts that there is a rigid hierarchy of authorities
(your buddy can’t simply act as an authority). In the degenerate case there is
just one authority whose public key is well known. If Alice needs to obtain Bob’s
public key, she simply asks him for it electronically, and Bob sends Alice a cer-
tificate (see Figure 10.5) that contains a public key and an X.509 distinguished
name, along with (among other things) an expiration date and the name of the
authority that issued the certificate. The contents of the certificate are signed
with the private key of the issuing authority, and since this authority is well
known, Alice can verify Bob’s certificate by simply using the well-known public
key of the authority.

In the real world, there are several authorities whose public keys (con-
tained in self-signed certificates) actually ship with Web browsers such as
Communicator and IE. Many individual companies also maintain their own

IIS 445

Subject

Public key

Issuer

Valid from/to

Version

Signature algorithm

Signature of issuer

Figure 10.5 An X.509 certificate

brown10.qxd 7/5/00 11:38 AM Page 445

certificate authorities (CAs) so that they can issue certificates internally; this
works well as long as the certificates are only used within that particular com-
pany. In order to broaden the scope of trust for these internal certificates, it’s
possible for the company’s certificate authority to be validated by one of the
well-known authorities, forming a tree of trust (see Figure 10.6).

In Figure 10.6, the company Foo may choose to accept Bob’s certificate
that was issued by Bar, because Bar has been certified by an authority that Foo
trusts. This manifests itself by a chain of certificates, starting with Bob’s cer-
tificate, which is signed by Bar, and Bar’s certificate, which is signed by Quux.
Quux is a root authority and thus signs its own certificate; this is the sort of well-
known certificate that gets distributed with software such as a Web browser. As
long as Foo trusts one of the certificates in the chain (in this case, Quux), Foo
develops trust in Bob’s certificate. This is a simplified explanation; for more
information on developing a public key infrastructure (PKI) such as this, see
Adams (1999), Feghhi (1999), and Ford (1997).

Web servers use X.509 certificates to prove their authenticity to clients.
Each client can obtain the Web server’s certificate, ask it for proof of its iden-
tity, and traverse up the hierarchy of trust until a trusted certifying authority
is found.

DISTRIBUTION446

Quux

Foo Bar

Bob

Trust paths Bob’s certificate chain

subject=Bob

issuer=Bar

Bar’s
signature

subject=Bar

issuer=Quux

Quux’s
signature

subject=Quux

issuer=Quux

Quux’s
signature

Foo trusts this
certificate

Figure 10.6 A hierarchy of trust and a resulting certificate chain

brown10.qxd 7/5/00 11:38 AM Page 446

Interlude: Some Acronyms and Terms
This section contains a rather terse description of some of the acronyms and
terms that you’ll commonly hear on the Web security playground. I wanted to
provide this to give you some idea of the history of authentication on the Web;
by putting these acronyms into context, I can focus on the dominant protocol.

SSL, PCT, and TLS, Oh My!
In 1994, Netscape Communications developed and popularized a network
authentication protocol known as the Secure Sockets Layer (SSL 2.0). In 1995,
Microsoft countered with a protocol known as Private Communication
Technology (PCT 1.0), which was an improvement on SSL 2.0. Around the
same time Netscape released an independent suite of improvements via the
SSL 3.0 protocol, which dominates the Web as of this writing. SSL 3.0 was
submitted to the IETF as an Internet draft (“Secure Sockets Layer 3.0
Specification”) in 1996, and an IETF working group was formed to come up
with a recommendation. In January 1999, RFC 2246 was issued by the IETF,
documenting the result of this group’s efforts: the Transport Layer Security pro-
tocol (TLS 1.0), which is virtually indistinguishable from SSL 3.0.6

After the world embraced SSL 3.0 and TLS, Microsoft gave up on PCT with
a sigh (the following quote was taken from the November 1999 MSDN build):

Developers are not encouraged to use PCT because it is Microsoft pro-
prietary and has been completely superseded by SSL 3.0 and TLS.

No matter how much I’d like to use the term TLS throughout the rest of
this chapter (because it’s been standardized), the world still refers to the proto-
col as SSL; thus, because there is so little difference between TLS and SSL, I’ll

IIS 447

6 I searched long and hard to find the differences between SSL and TLS and finally came up with
an Internet draft that specified the proposed modifications to SSL made by the authors of the TLS
RFC. This draft has expired, of course, but in case you’re interested, you can search the Web for
draft-ietf-tls-ssl-mods-00.txt. The most important change mentioned in this document that made
it into TLS is a revision to the MAC calculation algorithm, but other minor changes were also pro-
posed, such as the addition of more detailed error codes and a change in the way clients who have
no certificates respond to a server’s request for a client certificate.

brown10.qxd 7/5/00 11:38 AM Page 447

cave in and refer to the protocol as SSL as well. The name change just confuses
people.

SCHANNEL
You may have heard the term SCHANNEL (which stands for “secure channel”);
this is the name of the SSP in Windows that implements all four of the authen-
tication protocols discussed earlier: SSL 2.0, PCT 1.0, SSL 3.0, and TLS 1.0.
SCHANNEL is a Windows-specific term that is often bandied about in MSDN
documentation as an umbrella term for all these authentication protocols.

HTTPS
The Internet Assigned Numbers Authority (IANA) reserved port 443 for HTTP
over SSL (although all the different flavors of SSL, including PCT and TLS, also
use this port); HTTPS is the name of the URL scheme used with this port. Thus,
http://www.develop.com implies the use of vanilla HTTP to port 80, and
https://www.develop.com implies the use of HTTP over SSL to port 443.

Secure Sockets Layer
At the heart of SSL (a.k.a. TLS) is the record protocol that provides message
framing, typing, and fragmentation, as well as compression, encryption, and
MAC generation and verification.7 SSL assumes that a connection-oriented
transport is in use (TCP being the canonical example), and unless the message
fragments are received in the correct order from the underlying communication
protocol, the receiver won’t be able to decrypt the stream (each fragment isn’t
guaranteed to be independently decryptable).

To encrypt or generate/verify MACs, obviously both endpoints need to share
a secret key, otherwise known as a session key. SSL uses a higher-level proto-
col known as the handshake protocol on top of the record protocol to exchange
this key and authenticate the client and server to one another. Authentication is
technically optional, and there are three modes in which SSL can be used:8

DISTRIBUTION448

7 The concept of a MAC (message authentication code) was discussed in Chapter 7.
8 Note that it’s possible to negotiate a cipher suite with a NULL bulk data encryption algorithm,
which allows authentication without encryption. Although Web browsers don’t use this option, it’s
interesting to consider for other, more intelligent user agents.

brown10.qxd 7/5/00 11:38 AM Page 448

1. Mutual authentication

2. Server-only authentication (the client knows who the server is)

3. No authentication (deprecated)

The third option is silly if you think about it. Exchanging sensitive data over an
encrypted but unauthenticated link is like two spies sitting alone in a dark cor-
ner of an obscure restaurant, whispering secrets to one another without either
of them having a clue who the other one is. The vast majority of commercial
HTTPS traffic over the Web today uses option 2, wherein the client is anony-
mous (as far as SSL is concerned), but the server is authenticated.

SSL uses a four-way handshake in all three cases (see Figure 10.7); this
discussion will focus on the elements of this handshake necessary for authen-

IIS 449

Random #
Cipher suites

Random #
Cipher suite
Bob’s cert

Alice’s
signature

Alice’s cert
Encrypted
p.m. secret

I’m encrypting!
MAC

I’m encrypting!
MAC

Acceptable
cert types

Trusted CAs

ClientHello

ServerHello

Certificate*

CertificateRequest*

Certificate*

* = May or may not be included,
depending on context

ClientKeyExchange*

CertificateVerify*

ChangeCipherSpec
Finished

ChangeCipherSpec
Finished

Alice Bob

Figure 10.7 Establishing a new SSL session

brown10.qxd 7/5/00 11:38 AM Page 449

tication and key exchange.9 The client (Alice) first sends a Client Hello message
to the server (Bob) to indicate that she wants to establish a new SSL session.
This message contains a random number generated by Alice, as well as an
ordered set of preferred cipher suites (each cipher suite indicates a key
exchange algorithm, a bulk encryption algorithm, and a MAC algorithm).

Bob looks at the incoming request, selects a cipher suite from Alice’s pro-
posed list (assuming one is acceptable), and sends a Server Hello message back
to Alice. This message includes a random number generated independently by
Bob, along with the cipher suite that Bob chose from Alice’s list. If Bob chose
a cipher suite whose key exchange algorithm requires him to prove his identity
(only the deprecated option 3 does not), he’ll send his X.509 certificate as
well.10 Depending on the key exchange algorithm, Bob might also need to
include extra information to allow key exchange or satisfy U.S. export restric-
tions,11 but to keep things simple, let’s assume that the certificate Bob sends
to Alice can also be used directly for key exchange. Finally, as long as Bob has
provided his certificate, he is allowed to include a request for Alice’s certificate,
which forces Alice to prove her identity.

When Alice receives this information from Bob, she can verify Bob’s certifi-
cate. This includes checking the signature of the root authority with her copy of
the authority’s well-known public key (certificate verification is revisited in the
upcoming section Certificate Revocation). At this point, Alice knows that she
has a public key for Bob, but she really doesn’t have any proof that it’s actually

DISTRIBUTION450

9 See RFC 2246 if you want more detail.
10 Technically, this can be a list of certificates if Bob’s certificate wasn’t signed by an authority that
Alice trusts. In practice, this means that Bob sends back a chain of certificates up to but not nec-
essarily including the self-signed certificate for a well-known root authority such as VeriSign or
Thawte, with which all Web browsers are already equipped. As of this writing, most of the Web
sites we know and love (www.amazon.com, for example) have certificates that are signed directly
by a well-known root authority such as VeriSign. This is actually one of the minor differences
between SSL and TLS; in SSL, the server was always required to send the entire certificate chain,
including the self-signed certificate for the root authority.
11 This might include parameters for the Diffie-Hellman key exchange algorithm or an independent
RSA public key no longer than 512 bits to satisfy U.S. export restrictions for key exchange. This
allows strong authentication with weak encryption; the U.S. military is happy to allow Alice to
know the name of the tall, dark, and foreign person she’s having cybersex with, as long as they get
to watch!

brown10.qxd 7/5/00 11:38 AM Page 450

Bob on the other end of the wire. No session key has been exchanged, but Alice
is now going to remedy that.

Alice sends the following information to Bob: her certificate (if it was
requested),12 and another random number (known as the premaster secret)
that has been encrypted with Bob’s public key.13 If Bob requested a certificate
from Alice, she will also include her signature on all the data she’s sent to or
received from the record layer so far during the handshake.

Up until now, the SSL record layer has been streaming data using the NULL
bulk data encryption algorithm; nothing has been encrypted. Alice now streams
out a Change Cipher Spec message, which basically says, “Until I say other-
wise, I’m going to instruct my record layer to use the cipher suite we just nego-
tiated.” This means that Alice needs to calculate keys for bulk data encryption
and MAC generation/verification, both of which are ultimately just functions of
the premaster secret and the two random numbers generated independently by
the client and server during the first two messages. Finally, Alice streams out a
Finished message, which is encrypted by the record layer. This message
includes a MAC of all the data she’s sent to or received from the record layer so
far during the handshake.

When Bob receives Alice’s transmission, he verifies her certificate (assum-
ing that he asked her for one), obtains the premaster secret by decrypting it
using his private key, and (once again, assuming he requested her certificate)
verifies Alice’s signature on the handshake messages he’s seen so far using the
certificate she sent. (He’s now developed trust that it really is Alice on the other
end of the wire.)

Bob now receives Alice’s Change Cipher Spec message, calculates the keys
for bulk data encryption and MAC generation/verification, and instructs his
record layer to start using the new cipher suite to decrypt the incoming trans-
mission. This allows Bob to read the Finished message, which is at the tail of

IIS 451

12 When Alice sends her certificate to Bob, she also may send a chain of certificates, although in
this case SSL provides a way for Bob to indicate to Alice the root certificate authorities that he
trusts so that she doesn’t have to guess.
13 If Diffie-Hellman key exchange was negotiated, this information will instead be parameters for a
Diffie-Hellman key exchange (assuming those parameters weren’t already specified in the server’s
certificate).

brown10.qxd 7/5/00 11:38 AM Page 451

Alice’s transmission. After verifying the MAC in the Finished message, Bob
develops trust that the entire handshake and cipher suite negotiation wasn’t
tampered with, because this MAC protects the entire set of handshake mes-
sages exchanged so far.

Finally, Bob sends a Change Cipher Spec message back to Alice (instruct-
ing his record layer to use the new cipher suite to encrypt outgoing messages),
followed by a Finished message (which once again includes a MAC of all mes-
sages exchanged so far).

Alice receives the Change Cipher Spec message, instructs her record layer
to decrypt incoming messages using the negotiated cipher suite, and reads the
Finished message from Bob. If the message decrypts successfully and she can
verify the MAC Bob sends to her, she develops trust in Bob’s identity (only Bob
could have decrypted the premaster secret she sent, which was required for him
to be able to generate the MAC).

At this point, Alice and Bob have negotiated a cipher suite, exchanged
shared keys for bulk data encryption and message authentication, and Alice
knows that she’s talking to Bob. Bob may also (if he asked for a client certifi-
cate) know Alice’s identity.

Certificate Revocation
One of the biggest potential traps of using certificates is the tendency for peo-
ple to assume that a certificate is valid simply because its signature can be
verified and it’s not yet expired. In a password-based authentication system, if
Bob’s password is compromised, he can simply change his password. In NTLM
the authority immediately enforces this change for all new authentication
requests14 because the authority is involved in every single network authen-
tication exchange. In Kerberos, this change is usually enforced in something
less than ten hours (after Bob’s outstanding TGTs expire). So what happens in
a certificate-based system if Bob’s private key is compromised? Well, Bob noti-
fies his authority and obtains a new certificate, and the authority “revokes” the
old certificate.

DISTRIBUTION452

14 Barring replication latency between domain controllers.

brown10.qxd 7/5/00 11:38 AM Page 452

But what does this mean for Alice, who contacts a server that she presumes
is run by Bob but really has been hijacked by Fred (who has an illegitimate copy
of Bob’s old private key)? Fred can simply send Bob’s old certificate (which
won’t expire for a year or so) back to Alice and can prove ownership of the
certificate because he now holds the associated private key. Unless Alice
specifically checks for revocation, she’ll never know that she’s really talking to
Fred. Once again, public key cryptography is not a silver bullet. Alice still needs
to contact an authority to verify that Bob’s certificate hasn’t been revoked.

Bob’s authority publishes a certificate revocation list (CRL) that Alice can
obtain occasionally, perhaps once a day or once a week; she can use her
current copy of the list to validate Bob’s certificate. As an example, IE 5 has a
security option entitled “Check for server certificate revocation” that forces the
browser to download a CRL (or retrieve a freshly cached one) and verify that
each server-side certificate hasn’t been revoked. If you think about it, one
reason that certificates have expiration dates is to keep CRLs from growing
infinitely long.

From Theory to Practice: Obtaining and Installing
a Web Server Certificate
Now that I’ve described how SSL authentication works, you’ll find that it’s
mainly an administrative task to enable it in IIS. Recall that for SSL to be effec-
tive, the server must have a certificate so that at least one of the parties can be
authenticated. If you look at the properties for a Web site in IIS, you’ll notice on
the Web Site tab that the entry for SSL Port is disabled by default. IIS will not
support SSL without a server-side certificate.

Obtaining and installing a Web server certificate for an established company
is very straightforward.15 IIS provides a wizard that makes it easy. IIS allows
you to have multiple Web sites exposed from a single machine, and each of
these Web sites can have a certificate (or not); the point here is that you must
set them up independently. Choose the Web site for which you want to obtain

IIS 453

15 The following description assumes IIS 5.0; IIS 4.0 had a tool called Key Manager that was used
to manage the acquisition and installation of server-side certificates. The procedure is very similar
in any case.

brown10.qxd 7/5/00 11:38 AM Page 453

a certificate, bring up its property sheet, and choose the Directory Security tab.
Press the Server Certificate button to invoke the wizard.

The wizard allows you to create certificate requests, install new certificates,
remove an existing certificate, and so forth. Each of these activities requires
answering a few straightforward questions. Unless you’re planning on using
your own enterprise certificate authority16 to issue a certificate directly, obtain-
ing and installing a certificate will be a four-step process (see Figure 10.8). The
first step is to create the request. To do this, you need to choose the strength
for the key in the certificate (you should use 1024 bits or greater), along with
some strings that will end up in the certificate exactly as you type them in the
wizard:

• Name Some friendly name that you can use to distinguish this certifi-
cate from any others you might obtain.17

• Organization Name The name of your company.

• Organizational Unit Typically the name of your department.

• Common Name This is the name that will be used to authenticate the
URL being used to access the Web server, so it should match the

DISTRIBUTION454

16 When installing Certificate Services on a Windows 2000 domain controller, you can choose to
have it integrate with Active Directory, becoming an “enterprise” certificate authority.
17 This isn’t important for authentication, but will be included as an extra property in the certificate.

Create certificate request

Submit certificate request

Download certificate

Install certificate

Bob’s Web server VeriSign certificate
authority

Authenticate Bob
Sign certificate

1

3

4

2

Figure 10.8 Requesting and installing a certificate

brown10.qxd 7/5/00 11:38 AM Page 454

DNS name that you expect clients to use (for instance, the common
name for DevelopMentor’s Web site is “www.develop.com”).

• Country/Region Self-explanatory.

• State/Province You cannot use an abbreviation here (specify “Texas”
instead of “TX”).

• City/Locality No surprises here.

After this, the wizard asks you to choose the name of a text file where it will
dump the request. By the time this file is created, the wizard will have made
calls into the CryptoAPI to generate a public/private key pair for the certificate,
storing the private key on the local machine. This public key will be included
along with the other information you’ve entered in the text request file, which
you can send to your certificate authority (for instance, VeriSign or Thawte18).
The resulting file contains a base-64 ASCII rendering of all the information in
the request:

-----BEGIN NEW CERTIFICATE REQUEST-----

MIIDBjCCAm8CAQAwcTERMA8GA1UEAxMIcXV1eC5jb20xDzANBgNVBAsTBkJyYWlu

czEWMBQGA1UEChMNRGV2ZWxvcE1lbnRvcjERMA8GA1UEBxMIVG9ycmFuY2UxEzAR

BgNVBAgTCkNhbGlmb3JuaWExCzAJBgNVBAYTAlVTMIGfMA0GCSqGSIb3DQEBAQUA

A4GNADCBiQKBgQDFUxFtzr170yxptKuGI1590Sta5z2dVElLfjAn+q4T1uZE3DiH

HXNRHW1eS9W2aeMZhRnYRi5U8eOdG3RUO4YXy4B1sqfy5I0qjjySA89ghVd/6JcA

K1nhGJL9FPJ6XKVUNLez7NpSCFlYs5foyTqyxDkHzTnQwRwkkwQ9dlbnfwIDAQAB

oIIBUzAaBgorBgEEAYI3DQIDMQwWCjUuMC4yMTk1LjIwNQYKKwYBBAGCNwIBDjEn

MCUwDgYDVR0PAQH/BAQDAgTwMBMGA1UdJQQMMAoGCCsGAQUFBwMBMIH9BgorBgEE

AYI3DQICMYHuMIHrAgEBHloATQBpAGMAcgBvAHMAbwBmAHQAIABSAFMAQQAgAFMA

QwBoAGEAbgBuAGUAbAAgAEMAcgB5AHAAdABvAGcAcgBhAHAAaABpAGMAIABQAHIA

bwB2AGkAZABlAHIDgYkAXxNuAz6gcBaZUdef8WQ2PAroKMW8sprcKv7QD2encz6/

Wct9DZ5CkGynLGy0f+Lff7ViSDJqxYWaJ68ddqgXyAqIilF63kivPTiC6yxLaNX6

5v3cnKFx4UrUrGXZtub7M7/NuxSipOW0Vv7yCHganypxDyRzp6IhulEnL4APEH4A

AAAAAAAAADANBgkqhkiG9w0BAQUFAAOBgQBljJb1ZhWOwOLfzfHbC3yxGkXDy9w3

NA7uhQOvgntnqmSmdHP9nsM3DnxwaHb3EVxMKbAuLsSRDAE1KGqeamvQ3uFjuuL0

5q4nKhX25LyGFDSc6h1OHcv+0ugZ/9klsiViSeEGpMwllUf057o7q1Vls4HN22vM

wkcejcttDjo3Kw==

-----END NEW CERTIFICATE REQUEST-----

IIS 455

18 Thawte was actually acquired by VeriSign in December 1999.

brown10.qxd 7/5/00 11:38 AM Page 455

The second step is to send the request to the authority. You’ll typically paste
this into the authority’s Web-based certificate application form, along with con-
tact information, proof of domain ownership, and proof of your right to do busi-
ness under the specified organization name. Third-party certificate authorities
will charge you a fee for this service. (Fees vary depending on the level of ser-
vice and security; as of this writing you can expect to pay approximately $100
to $1000 for a certificate that expires in a year.)

The third step is when the authority issues (or denies) your request.
Assuming the authority can determine that you are who you say you are (by
checking addresses, making phone calls, etc.), you’ll receive email (typically
within a few business days) indicating that your certificate request has been
granted and that you can download your certificate, which will again take the
form of a file (the contents will look very similar to the certificate request).

The fourth and final step is to install the downloaded certificate. If you now
revisit the certificate wizard, it’ll allow you to process the response; just give it
the path to the file you downloaded from the authority and you should be off
and running.

Note that during this request/response phase, the private key remains on
the computer where you generated the request. Be aware that if you delete the
“pending” request using the wizard (before you install the certificate), the pri-
vate key will be erased and you’ll have to start all over again. If you’ve already
paid money to a third-party authority to sign your public key, this can be painful,
so watch out.

Once you’ve installed the certificate, you can export the certificate along
with its corresponding private key to a file that you can drop on a floppy and
put in an offline vault in case the Web server crashes and the private key
becomes unrecoverable. To do this, bring up the property page for the Web site,
go to the Directory Security tab, and press the View Certificate button. Go to the
Details tab on the resulting dialog, and choose Copy to File. If you choose to
export the private key, you’ll be asked for a password that will be used to
encrypt the file. If you were really concerned about security, you could store the
password in a separate vault, but to be honest, you should be more worried
about someone simply compromising the Web server and stealing the private
key from there. (Unfortunately, for a Web server, there’s not much sense in

DISTRIBUTION456

brown10.qxd 7/5/00 11:38 AM Page 456

keeping the private key offline, because it is needed to establish each new
HTTPS session.)

After installing a certificate, you’ll notice that the SSL Port field on the Web
Site tab of the Web site’s property sheet is now enabled, and defaults to the
standard port number for HTTPS, 443. You should now be able to access your
Web site from a browser using the https: scheme.

What Is Server Gated Cryptography?
You may be wondering what the Server Gated Cryptography checkbox in the IIS
cerificate wizard is all about. Prior to January 2000, United States export laws
strictly prohibited the export of software that used strong encryption (128-bit
SSL bulk data encryption keys fall under this category). Browsers built by
Microsoft and Netscape were therefore subject to these laws and normally do
not use 128-bit encryption unless the client specifically downloads an upgrade.
Microsoft therefore proposed an extension to SSL called Server Gated
Cryptography (SGC). SGC allows a server certificate to include a special anno-
tation that indicates that the server has been approved to use strong encryption
(certain types of businesses including banks and online merchants were
excluded from the older export laws). If a browser that supports SGC detects
this, it will negotiate the use of strong (128-bit) bulk data encryption with that
server. As of this writing, VeriSign issues SGC certificates (this is part of their
Global Site Services program), but they are considerably more expensive than a
normal certificate.

However, now that U.S. export laws have been relaxed, SGC is not nearly
as critical to global trade over the Internet. Clients can now download strong
encryption packs for their browsers that work with or without SGC support on
the server side. There are still some limitations, but they generally only apply to
embargoed countries (see http://www.microsoft.com/exporting for more details).

Requiring HTTPS via the IIS Metabase
In IIS, once you’ve installed a server certificate, any virtual directory may be
accessed via HTTP or HTTPS. If you want to require HTTPS for a particular
resource, you can use the metabase to do so. If you’re not already familiar with
the metabase, it’s simply a hierarchical data structure that mimics the layout of

IIS 457

brown10.qxd 7/5/00 11:38 AM Page 457

your Web site. The metabase tree is what you’re looking at when you manage
the Web site using the IIS MMC snap-in. The metabase uses an attribute inher-
itance scheme somewhat similar to the DACL inheritance scheme used in
Windows 2000: When you change an attribute on a node, it propagates to all
children of that node, except for those children that have provided their own
definition of the attribute.

The attribute that controls whether HTTPS is required is AccessSSL .
Here’s a script that turns on this attribute for a virtual directory known as
“Secure” on the default Web site:19

set vd = getObject("IIS://localhost/W3SVC/1/Root/secure")

vd.accessSSL = true

vd.setInfo

In the metabase, once a child node has defined an attribute, the flow of
inheritance is interrupted at that node (exactly the same way SE_DACL

_PROTECTEDworks in a security descriptor, as described in Chapter 6). If you
want to remove the attribute from an object and unblock the flow of inheritance
for that attribute, you must use the PutEx method:

set vd = getObject("IIS://localhost/W3SVC/1/Root/secure")

vd.putEx 1, "AccessSSL", ""

vd.setInfo

If you enable AccessSSL on a virtual directory, as long as no children pro-
vide their own definitions, they will automatically inherit the new setting, and
all the resources subordinate to that directory will require the client to use
HTTPS. (If the client attempts to access any of these resources via vanilla HTTP,
she’ll get an error instructing her to switch to HTTPS.) As with most metabase
settings, you can control this setting on a per-file basis if you need that level of
granularity. To access this property via the user interface, bring up the property
sheet for the resource in question and choose Directory Security for a Web site
or virtual directory object, or File Security for an individual file, and then press

DISTRIBUTION458

19 If you’re not familiar with administering IIS programmatically, take a look at the IIS reference
(just surf to http://localhost/iishelp on your Web server to get the help index). Also check out the
Inetpub\AdminScripts directory for some example scripts.

brown10.qxd 7/5/00 11:38 AM Page 458

the Edit button in the section labeled Secure Communications. Most of the
metabase keys this chapter describes have pretty obvious user interface repre-
sentations, but some aren’t accessible via the user interface at all (I’ll point
these out as I get to them).

The following list provides some related settings that might interest you,
along with notes as to how they affect the behavior of IIS.

• AccessSSL This attribute was discussed previously; it requires use
of HTTPS to access the resource.

• AccessSSL128 This setting only makes sense if you’ve also turned
on AccessSSL; it further limits cipher-suite negotiation to 128-bit
or better bulk encryption keys. Most user agent software produced
in the United States uses a relatively weak key by default to satisfy
older U.S. export laws, so if you plan on using this feature, make
sure all your clients are using software that can negotiate 128-bit
encryption keys.

• AccessSSLNegotiateCert Causes the server to request a client
certificate during SSL negotiation. If the client doesn’t present a certifi-
cate (which is legal according to SSL), IIS will not fail the connection
request. Thus some clients will present certificates, whereas others
will not. This assumes that the AccessSSLRequireCert attribute is
set to False .

• AccessSSLRequireCert This option only makes sense if you’ve
also turned on AccessSSLNegotiateCert ; this indicates that
clients must provide a certificate in order to access the resource.

• AccessSSLMapCert Enables automatic mapping of client certifi-
cates to Windows security accounts. This is discussed in more detail
in the section entitled Client Authentication.

• AccessSSLFlags Technically, all the previous options are stored in
this one single attribute; the individual attributes simply provide an
easier way to set these bits. The main reason I’m mentioning this is
because all these settings are inherited as a unit. See the IIS docu-
mentation if you want the precise bit mappings.

IIS 459

brown10.qxd 7/5/00 11:38 AM Page 459

Managing Web Applications
Back in the old days with IIS 3.0, the Web server simply ran in a single process
known as INETINFO.EXE , which lurked in the System logon session. All
server-side Web applications therefore ran in the System logon session, which
is really dangerous. Let me give an example why.

Interlude: The Buffer Overflow Attack
Consider the following C++ code:

void foo() {

char buf[256];

GetStringFromTextBox(buf);

}

This ultra-simplified code reads a string from a text box on a user-submitted
form. Imagine that this code were housed in an Internet Server API (ISAPI) DLL
running inside INETINFO.EXE , and that the user actually typed 300 charac-
ters into the text box. Because GetStringFromTextBox doesn’t pay any
attention to how much memory buf points to, it will happily overflow the buffer.
Is this bad? It’s incredibly bad. Because buf is on the stack, any overflow will
quickly overwrite the return address on the stack, and when foo returns, it
won’t return to the caller, it’ll return to whatever address was overwritten on
the stack.

Crackers find great fun in sending unexpectedly long strings to applications
as input and just waiting for one of them to explode. Once they discover a bug
like this, it’s just a matter of shortening the string until the program doesn’t
crash anymore. Now they know the exact length of the buffer and have a darn
good idea where to write their own return address onto the victim’s stack. By
crafting an input string that contains binary executable machine instructions,
all the cracker has to do is figure out the address of the buffer on the stack20

and point the return address into the buffer. The most elegant attack I’ve seen

DISTRIBUTION460

20 This becomes quite easy if she can get a Dr. Watson crash report (in other words, if she can
reproduce the bug on her own machine).

brown10.qxd 7/5/00 11:38 AM Page 460

documented21 is one in which the cracker sends a small program as input that
loads WININET.DLL and calls a few functions that download an executable
program of the attacker’s choosing onto the victim’s hard drive. The program
then launches the downloaded executable and quietly shuts down the victim-
ized process in an attempt to hide the fact that something is horribly awry.
(Note that simply using a safer language than C or C++ can help alleviate this
problem.)

Imagine if this attack were carried out on an ISAPI application running in
the System logon session. The attacker has now compromised the TCB of the
machine and it’s game over. It’s funny, I remember when people were worried
about ISAPI DLLs crashing the Web server; now that you’ve seen that a buggy
ISAPI DLL can allow an attacker to hijack the Web server’s process, I hope that
the imperative for moving this code out of the System logon session is clear.

Introducing the Web Application Manager
IIS 4.0 addressed this problem in an elegant way. By separating the core Web
server functionality present in INETINFO.EXE from the code needed to in-
voke ISAPI applications, it is possible to run ISAPI applications in separate
processes, sandboxing them in lesser-privileged logon sessions. This separation
was implemented by having the core Web server talk to the ISAPI environment
via an (undocumented) COM interface. IIS 4.0 offered two choices for each Web
“application” (each virtual directory is considered a separate application): The
application could run in-process inside INETINFO.EXE , or it could run in its
own separate process. In either case, a logical COM object representing the
environment for each application was registered and added to the MTS catalog
as a configured component. This component was named the Web Application
Manager (or WAM for short). This is one case where COM’s claim of “local-
remote transparency” does in fact ring true; using a COM interface allows
the Web server to interact with in-process as well as out-of-process WAMs
polymorphically.

IIS 461

21 It’s hard to say if this essay will still be on the Web by the time you are reading this book, but
if it is, it’s great reading: http://www.cultdeadcow.com/cDc_files/cDc-351. Don’t visit this site if
you’re easily offended by street talk. If you find that this site is unavailable, visit my Web site and
I’ll mirror it there.

brown10.qxd 7/5/00 11:38 AM Page 461

Unfortunately, IIS 4.0 didn’t go quite far enough, and since each “isolated”
Web application chews up another process, the default setting for each new
Web application was to run in-process. IIS 5.0 makes out-of-process Web appli-
cations more attractive by providing three options for isolation:

1. Low (IIS Process)

2. Medium (Pooled)

3. High (Isolated)

Options 1 and 3 are exactly the same as what IIS 4.0 provided; in the first case,
the application code runs in INETINFO.EXE , and in the last case, the applica-
tion code runs in its own dedicated process. What’s interesting is the new
option 2, which places all pooled applications into a single process that runs
outside INETINFO.EXE (and in a separate logon session, as you’d expect). This
new option is the default in IIS 5.0, and is a great way to mitigate threats like
the buffer overflow attack. (Don’t get me wrong—the attack is still possible, but
hijacking a process in the TCB is very different from hijacking one outside the
TCB, assuming that the administrator has erected effective perimeter defenses
around the TCB.)22

The process isolation level is represented by a metabase attribute named
AppIsolated , an inheritable attribute that can be set on a per-application
basis (the current IIS 5 docs indicate that this value can be set on subdirecto-
ries inside an application, but this has no effect). This attribute can have one of
three values:

0: Low (IIS Process)

1: High (Isolated)

2: Medium (Pooled)

Because each WAM runs in the context of a configured COM+ application,
you can actually use the Component Services snap-in to look at the two WAM-

DISTRIBUTION462

22 For an extreme example of carelessness, if everyone is granted all access to critical registry keys
and system files, then the TCB can be compromised by simply replacing components of the oper-
ating system itself. Sandboxing a server in a lesser-privileged logon session won’t help unless the
administrator secures the perimeter of the TCB.

brown10.qxd 7/5/00 11:38 AM Page 462

hosting applications that IIS creates by default when it is installed with the
operating system:

IIS In-Process Applications

IIS Out-Of-Process Pooled Applications

The first application is designated as a library application, so that when
INETINFO.EXE creates an instance of the WAM for an in-process application,
the WAM will load into that same process. The second application is designated
as a server application, so that when INETINFO.EXE creates an instance of the
WAM for a pooled application, that object will be served up from a single
COM+ surrogate process.

If you look at the properties for the second application listed earlier, you’ll
notice that it is designated to run as a distinguished principal: IWAM_
MACHINE, where MACHINE is the NetBIOS name of the machine at the time
IIS was installed. This is a local account that is created by the system at IIS
install time. Every Web application that you designate to run at the third level
of isolation (Isolated) causes IIS to create another distinct COM+ application
configured in a similar way.

To demonstrate the differences between these levels of process isolation,
imagine creating six virtual directories, App1 through App6, and configuring
them as follows:

App1: Low (IIS Process)

App2: Low (IIS Process)

App3: Medium (Pooled)

App4: Medium (Pooled)

App5: High (Isolated)

App6: High (Isolated)

Figure 10.9 shows the results if all these applications are in use simultaneously.
Traversing over to the Component Services snap-in, here is the complete list of
COM+ applications that are now hosting WAMs:

IIS 463

brown10.qxd 7/5/00 11:38 AM Page 463

IIS In-Process Applications

IIS Out-Of-Process Pooled Applications

IIS-{Default Web Site//Root/App5}

IIS-{Default Web Site//Root/App6}

As Figure 10.9 makes clear, App5 and App6 are configured to run in separate
server applications, also under the auspices of IWAM_MACHINE.

IIS actually doesn’t hardcode the account name and password for IWAM_
MACHINE; you can get and set these values via the metabase. If you change
these values, IIS will use the new values from then on for the identity of all new
COM+ applications it creates. Here’s some code that displays the user name
and password for the IWAM_MACHINE account (you must do this program-
matically; these attributes aren’t exposed via the IIS snap-in):

DISTRIBUTION464

App5

WAM

dllhost.exe

IWAM_Machine
batch logon session

App1

WAM

App2

WAM

inetinfo.exe

System logon session

App3

WAM

WAM

dllhost.exe

App4

App6

WAM

dllhost.exe

Core IIS
application

HTTP
requests

IWAM_Machine
batch logon session

IWAM_Machine
batch logon session

Figure 10.9 Runtime profile of Web applications

brown10.qxd 7/5/00 11:38 AM Page 464

set w = getObject("IIS://localhost/W3SVC")

msgBox w.wamUserName & chr(13) & w.wamUserPass

If you make changes, be aware that IIS doesn’t attempt to synchronize your
changes with the security database (you can, of course, do this programmati-
cally; see the appendix). If you change this to a user name of “Foo\Bob” with a
password of “shazam,” you’d better make sure that the Foo domain does in fact
have an account called Bob, and that its password is indeed “shazam.” Also
note that I used the older-style authority\principal form for the name, because
COM+ currently chokes on server identities in UPN form (bob@foo.com), as
mentioned in Chapter 9.

Before you make a change like this, recall from Chapter 9 that it’s usually
safest to use a local account for a server’s identity unless you absolutely need
something different. Anyone with administrative access to the metabase can
read this user name and password, so leaving this as a local account severely
restricts the damage that can be done if the machine is compromised and the
password disclosed.

Client Authentication
Although Figure 10.9 is interesting, it doesn’t provide the full picture. Every
WAM thread that performs work in response to an HTTP request from a client
does so while impersonating. Which account that thread actually impersonates
depends on a number of factors, but it’s critical to remember that each WAM
thread that makes calls to the file system, an ISAPI application, or an Active
Server Pages (ASP) application (which is really just a stylized form of ISAPI)
does so while impersonating somebody.

The various ways that IIS can determine the identity of the client, and thus
obtain a logon session for the WAM thread to impersonate, are listed here in
order of preference:

1. Anonymous (no authentication)

2. Certificate-Based Authentication

3. Integrated Windows Authentication

IIS 465

brown10.qxd 7/5/00 11:38 AM Page 465

4. Digest Authentication

5. Basic Authentication

Each resource can have its own configuration for authentication, and you can
select one or more of these options via the metabase. The metabase attributes
for enabling or requiring client certificates were discussed previously. As for the
other options, the AuthFlags attribute (a bitfield) controls which authentica-
tion options are allowed.23 Here are the bit values you can use with this
attribute:

0x00000001 : Anonymous

0x00000002 : Basic

0x00000004 : Integrated Windows Authentication (SPNEGO)

0x00000010 : Digest

Anonymous (No Client Authentication)
You may have noticed from the previous list that IIS prefers not to authenti-
cate its clients. Authenticating each client consumes CPU resources and
increases network traffic. Many large commercial Web sites typically don’t rely
on the operating system to perform authentication; rather, authentication is
done at the application level (perhaps by asking for a credit card number
and verifying the billing address, or even by asking for an application-defined
password).

IIS has the notion of an “anonymous Internet user” account, which defaults
to IUSR_MACHINE, another local account (similar to IWAM_MACHINE) that’s
created when IIS is installed. For a given resource, if the Anonymous option is
enabled, IIS will check to see if the requested resource (HTML file, ASP script,
GIF file, etc.) can be successfully accessed by this account. If the DACL on the
file grants access to the anonymous Internet user account, IIS will execute the
client’s request under the auspices of that account, as opposed to trying any of

DISTRIBUTION466

23 There are also three subflags (AuthAnonymous , AuthNTLM, and AuthBasic), but they are
rather out of date. There is no corresponding AuthDigest setting, and AuthNTLM should really
be renamed AuthNegotiate because it now means SPNEGO.

brown10.qxd 7/5/00 11:38 AM Page 466

the more expensive authentication options.24 This means that IIS will imper-
sonate the anonymous Internet user account and open the file while imperson-
ating. If instead the DACL denies access to the anonymous Internet user, IIS will
move on to the next authentication option in the list (access will be denied if no
other option is enabled for this resource).

Note that I’ve been careful to label this account in abstract terms; this is
because it doesn’t always have to be IUSR_MACHINE. Rather, each individual
Web resource (Web site, virtual directory, file system directory, file) in the IIS
metabase has the following (inheritable) attributes:

• AnonymousUserName The name of a valid user account that IIS will
use to establish a logon session for anonymous Internet users when
they request this particular resource

• AnonymousUserPass The password for the account just described

• AnonymousPasswordSync A boolean attribute with magical proper-
ties that I’ll describe shortly

By default, the W3SVCnode in the metabase (the root of all Web nodes) sets
AnonymousUserName to IUSR_MACHINE, and AnonymousPasswordSync to
True . This latter property is quite magical; when set, it causes INETINFO.EXE

to obtain a logon session without providing a password by invoking a special
subauthentication DLL in the LSA that basically says “Sure, I’ll give you a logon”
without checking the password at all. This is a nifty feature, but be aware that
it’s only supported for local accounts.25 If this feature alarms you, remember
that INETINFO.EXE runs in the System logon session and is therefore part of
the TCB. This is just an example of a member of the TCB doing whatever it
pleases on the local machine.

Based on my own experimentation with IIS 5.0, if you use the password
synchronization option, the resulting logon session for the anonymous user will
be a network logon session with no network credentials, which makes sense

IIS 467

24 One exception to this rule is as follows: If the server requests a certificate and the client presents
one, and if a mapping to a Windows user account can be found (I’ll cover this shortly), IIS will use
the mapped account as opposed to simply accessing the resource as the anonymous Internet user.
25 Although with experimentation, I was able to get it to work with domain accounts as well. If you
try to configure a domain account with this magic setting via the Internet Services snap-in, you’ll

brown10.qxd 7/5/00 11:38 AM Page 467

because IIS obtained the logon session without providing a password. On the
other hand, if you don’t use this feature and you specify a password explicitly,
the logon session will be an interactive logon session with network credentials.
(Of course, if you’re using a local account, these network credentials won’t buy
you much unless you’ve created a matching user name and password on some
other machine.)

Another thing to be aware of is that when two or more resources share the
same anonymous account settings (which is typically the case), IIS does its best
to cache a single logon session and impersonate that one logon session for all
those resources, even across isolated application boundaries (Figure 10.10
shows an example). If you’ve read Chapter 8, this should make you think, “I’m
probably sharing a logical LAN Manager client port with other Web applica-

DISTRIBUTION468

Thread

Token

Pooled

WAM

Pooled

WAM

dllhost.exe

IWAM_MACHINE
batch logon session

IWAM_MACHINE

Isolated

WAM

dllhost.exe

System logon session

SYSTEM

Isolated

WAM

dllhost.exe

IWAM_MACHINE

IWAM_MACHINE
batch logon session

IUSR_MACHINE
network logon session

Figure 10.10 A typical set of logon sessions for anonymous Internet users

brown10.qxd 7/5/00 11:38 AM Page 468

tions.” If you try to use alternate credentials to access a remote file server by
calling NetUseAdd , you might succeed, but you’ll be changing the credentials
used for that server for all other Web applications that are also using the
anonymous logon. It’s also possible that someone has already beat you to the
punch, in which case you’ll run into the dreaded conflict of credentials that
was discussed in Chapter 8. Watch your step here. This is one case in which
having your application set to an isolation level of High can be a good thing
because you can always call RevertToSelf to get to your own application’s
private batch logon session (for IWAM_MACHINE), at which point you can call
NetUseAdd without tromping on any other applications.

Certificate-Based Client Authentication
Earlier in the chapter I described the SSL protocol and explained that as long
as the server has a certificate, the server is allowed to request a certificate from
the client. I also described the metabase attributes that allow you to control
whether IIS should request or even require a client certificate.

Before IIS will accept a client certificate, it must verify that that certificate
is valid. This involves comparing the current date with the valid from/to dates
in the certificate, followed by verifying the signatures in the certificate chain.
Finally, IIS must determine whether any of the certificates in the chain are
trusted. By default, each Web site trusts all certificates that haven’t expired, so
it’s a good idea to create a certificate trust list (CTL) for your Web site that lim-
its this trust to certificates for a selected set of trusted authorities. To do this,
bring up the property sheet for the Web site, choose the Directory Security tab,
and then press the Edit button that takes you to the certificate-related settings.
Check the box that says “Enable certificate trust list.” This tells IIS not to trust
any authorities except the ones that you put in the CTL. Press New to invoke a
wizard that will help you build the CTL; it’s pretty straightforward once you’ve
figured out which certificate authorities you need to trust.

As IIS validates certificates, it needs to check for revocation, which can
be time-consuming. By default IIS skips this step, but you can control this
via the CertCheckMode metabase attribute on each Web site (this is not avail-
able via the IIS snap-in; it must be set programmatically). Setting this value
to a number greater than 0 forces IIS to check for revocation (which may

IIS 469

brown10.qxd 7/5/00 11:38 AM Page 469

involve downloading a CRL from a certificate authority, or simply looking in a
cached CRL). If you are serious about client authentication, you should enable
this check.

At this point, another metabase attribute becomes useful: AccessSSL

MapCert , which is really just another bit that can be set or cleared in the
AccessSSLFlags attribute that was mentioned early in the chapter. If this
attribute is set to True , IIS will attempt to map the client’s certificate onto a
Windows user account via one of two mechanisms: Either IIS will use its own
internal table of mappings from certificates to user accounts/passwords, or it
will ask its domain controller to perform the mapping based on settings in
the directory service. You can control which method is used via the metabase
attribute SSLUseDSMapper. (This is a global setting on the W3SVCnode in the
metabase, accessible via the Web Service Master Properties in the user inter-
face; as of this writing, you cannot control this on a per–Web site basis.) By
default SSLUseDSMapper is set to False , which indicates that IIS should per-
form its own internal mapping.

An administrator can configure the internal IIS certificate-to-account map-
ping via the IIS snap-in. Each Web site has its own set of account mappings,
which can be edited by going to the property sheet for the Web site, choosing
the Directory Security tab, and pressing the Edit button that takes you to the
certificate-related settings. After checking “Enable client certificate mapping,”
which is just the AccessSSLMapCert metabase setting, press Edit to config-
ure the certificate-to-user-account mappings.

There are two ways to map certificates to user accounts in IIS: one certifi-
cate to one account, or many certificates to one account. The first method
requires you to obtain a certificate from the user (typically packaged in a base-
64-encoded ASCII file), whereas the second method allows you to simply
specify a set of criteria for the various components of the distinguished name
for the subject and issuer in the certificate (for instance, you can detect cer-
tificates issued by VeriSign in which the subject’s organization is ACME
Corporation and map these certificates onto a particular user account). With the
many-to-one option, you can either grant or deny access to a matched certifi-
cate. Denying access is easy—you just need to indicate that this is your inten-
tion via a radio button.

DISTRIBUTION470

brown10.qxd 7/5/00 11:38 AM Page 470

If you want to grant access (using the one-to-one or many-to-one option),
you’ll need to provide a user account and password, which IIS will tuck away
in the metabase. If you want to configure this mapping programmatically via
script, you’ll want to check out the IIsCertMapper interface; this interface
currently allows you to set up one-to-one mappings, but does not provide for
many-to-one mappings, which must be set up via the IIS snap-in.

If IIS authenticates a client via one of these internal certificate mappings,
the result will be an interactive logon session with the network credentials of
the account (which makes sense, because the logon session was created locally
with a password). If, instead, IIS delegates authentication to the directory ser-
vice, it will establish a network logon session that will (naturally) not have net-
work credentials. If a match cannot be found, or if the client did not submit a
certificate,26 IIS will move on to the next authentication option in the list, or will
deny access if no further options are available.

If Alice was issued a certificate from an enterprise security authority in her
domain (one that’s integrated with the directory service), her certificate will
have enough information in it for the directory service to determine which
account is Alice’s. For other clients, it’s possible to set up certificate mappings
manually in the directory service: Bring up the Active Directory Users and
Computers snap-in, turn on the Advanced Features option via the MMC View
menu, then right-click on any user account and choose Name Mappings to
do this.

Certificates are the most natural and, when used properly, can be the
most secure way to authenticate clients over the Internet, but there are also
other options available if issuing client certificates doesn’t make sense for your
application.

Basic Authentication
Basic Authentication is the native authentication mechanism that is built into
HTTP. The client sends an HTTP request to the server, and the server sends
back a failure, demanding that the client prove his or her identity by sending a

IIS 471

26 This of course assumes that you haven’t turned on the AccessSSLRequireCert attribute,
which causes IIS to immediately fail the connection during the SSL handshake if the client doesn’t
provide the requested certificate.

brown10.qxd 7/5/00 11:38 AM Page 471

user name plus a base-64-encoded ASCII password. Base 64 is not an encryp-
tion algorithm; rather, it’s an expansion algorithm that allows Internet-unfriendly
characters to be represented by friendly ones, and is therefore completely
reversible without a key. Thus Basic Authentication only makes sense over an
SSL encrypted link with strong server-side authentication. As long as you know
who you’re sending the password to, and as long as you are assured that
nobody but that server will see the password, Basic Authentication works just
fine, assuming you trust the server with your cleartext password.

If you attempt to turn this authentication mechanism on via the IIS snap-in,
you’ll get a very nasty warning that says, “Don’t do this unless you plan on using
SSL to secure the connection.” This is great advice; you should require SSL for
any resources where you plan to allow Basic Authentication. If you can’t afford
a public key infrastructure, this combination will serve you well.

When IIS receives the client’s user name and password, it will check the
LogonMethod attribute in the metabase to determine which type of logon ses-
sion to establish. There are three options:

0: Interactive logon (the default)

1: Batch logon

2: Network logon

The first two result in a logon session with network credentials; the network
logon naturally does not have network credentials. Which one should you
choose? Well, a batch-style logon will be pretty tough for most clients to estab-
lish, because no principals are granted this logon right by default. An interac-
tive logon is more wide open in this respect, depending on the type of machine
your server runs on (domain controllers severely limit the right to an interactive
logon). However, establishing an interactive logon can be considerably more
expensive than establishing a batch or network logon (as I discussed in Chapter
4). Generally, everyone is granted a network logon on any machine, including
domain controllers. (Whether it’s good security practice to run a public Web
server on a domain controller is another question entirely; you should avoid
doing this in my opinion, as I’ll discuss shortly.)

One thing you should be aware of when using Basic Authentication is that
Web applications (CGI, ISAPI, ASP) will have access to the client’s cleartext

DISTRIBUTION472

brown10.qxd 7/5/00 11:38 AM Page 472

password via a server variable named AUTH_PASSWORD. I know of no way of
disabling this, which is too bad, considering IIS has already used the password
to authenticate the client; letting this information leak through to scripts is dan-
gerous. (Just because you trust the TCB of a server with your password doesn’t
mean you want to trust all its scripts with your password as well.) However,
even if this little flaw didn’t exist, trusting the TCB of the Web server with your
credentials may be more than a security-conscious client is willing to do. In
that case, consider using a client-side certificate, which is ultimately a client’s
safest bet.

Digest Authentication
Digest Authentication is a relative newcomer (it was introduced with HTTP 1.1
and was first implemented by Microsoft in IIS 5 and IE 5), but it will likely have
limited use as certificate-based authentication becomes more and more popu-
lar. Digest Authentication is somewhat similar to NTLM: It’s a simple challenge/
response protocol that allows a client to prove knowledge of a password with-
out transmitting the password across the wire. It does not provide mutual
authentication, and it does not provide a way to exchange a session key for data
encryption or MAC generation. It also requires password storage for users to be
weakened significantly. (The passwords must be stored in such a way that the
domain controller can decrypt them to obtain a plaintext password; this is
known as using reversible encryption.)

Probably the most dangerous thing of all is that the only way this mecha-
nism can be used is if the Web server resides on the same machine as the
domain controller (to have access to those cleartext passwords). Exposing a
public Web server from a domain controller opens some serious security risks;
you’d better make absolutely sure that all the applications on your server are
sandboxed or bug-free, because a compromise of the TCB of a domain con-
troller is a compromise of the domain itself.

I mention this protocol only for completeness. If you care about securing
the transactions on your Web server, you’ll get a server certificate and use SSL
to encrypt the session. The authors of the spec (RFC 2069) state their position
as follows:

IIS 473

brown10.qxd 7/5/00 11:38 AM Page 473

Digest Authentication does not provide a strong authentication mech-

anism. That is not its intent. It is intended solely to replace a much

weaker and even more dangerous authentication mechanism: Basic

Authentication. An important design constraint is that the new authen-

tication scheme be free of patent and export restrictions.

Most needs for secure HTTP transactions cannot be met by Digest

Authentication. For those needs SSL or SHTTP are more appropriate

protocols. In particular, Digest Authentication cannot be used for any

transaction requiring encrypted content. Nevertheless, many functions

remain for which Digest Authentication is both useful and appropriate.

Integrated Windows Authentication
The Integrated Windows Authentication option tells IIS to engage the user agent
in a native Kerberos or NTLM handshake piggybacked on HTTP. These exten-
sions are not supported by non-Microsoft browsers, which significantly limits
the option’s appeal for use with clients on the Internet at large. Another prob-
lem with using Kerberos or NTLM is that neither protocol gets along very well
with firewalls. For instance, the Kerberos KDC listens on port 88 for TCP or
UDP requests; can you imagine any administrator in his or her right mind open-
ing this port to allow random crackers on the Internet to have direct conversa-
tions with the most trusted entity in the domain? I think not. Microsoft and
Cisco have proposed extensions to Kerberos to work around this problem (see
the Internet draft “Initial Authentication and Pass Through Authentication Using
Kerberos V5 and the GSS-API”), but this still won’t solve the browser problem;
most browsers expect to use certificates to authenticate their clients.

Within the perimeter of the firewall in the confines of a Windows-only enter-
prise, however, this is a very convenient option. Alice doesn’t need to be issued
a certificate to participate. She just has to agree to use Internet Explorer, and
the system will use the network credentials that were established when she
logged in via Winlogon to authenticate her to IIS servers on the company
intranet.

The result of this form of authentication is (naturally) a network logon ses-
sion on the server. (This assumes the client is not running her browser on the
same machine as the Web server; in that case often the client’s local interactive
logon session will be used directly.)

DISTRIBUTION474

brown10.qxd 7/5/00 11:38 AM Page 474

If authentication fails using the client’s default credentials (either because
of problems with authentication or because the client has not been granted
access to the resource), Internet Explorer will pop up a dialog asking for alter-
nate credentials, allowing the client to retry.

Server Applications
Three classes of server applications are in common use with IIS today: raw
ISAPI applications, ASP script-based applications, and Common Gateway
Interface (CGI) applications. All these applications are ultimately derived from
the basic CGI model that provides a set of variables describing the client and
server environment as well as the request, along with input and output streams
for reading and writing the request and response bodies. The interface that
exposes these variables and streams to the application differs significantly
among the three types of applications, but the basic information provided is
similar. Table 10.1 lists some interesting variables that are security related.

IIS 475

Variable Definition

AUTH_TYPE Indicates the authentication mechanism that IIS used to
obtain the logon session for the client.

REMOTE_USER, Although the IIS documentation discusses each of these
AUTH_USER, separately, giving them slightly different semantics, in
LOGON_USER practice they’re generally the same, and refer to the

client principal that was authenticated in authority\
principal form.

AUTH_PASSWORD For Basic authentication, this is the cleartext password
that the client specified (better trust those ASP scripts!).
For Digest Authentication, this is the set of values com-
puted by the digest (see RFC 2069 for details). For all
others, this is blank.

SERVER_PORT_SECURE 0 indicates HTTPS is not in use; 1 indicates HTTPS is
in use.

HTTPS “off” indicates HTTPS is not in use; “on” indicates
HTTPS is in use.

Table 10.1 Security variables for server applications

brown10.qxd 7/5/00 11:38 AM Page 475

I wrote a simple script that echoes back these security-related variables,
and ran it several times while changing the authentication options on the server.
Table 10.2 shows my results when running over HTTP (note that I’ve omitted
all the certificate-related fields because naturally they were all empty). Here are
the values that I didn’t have room for in the table:

<dpw1>

username="quux\alice", realm="preston", qop="auth",

algorithm="MD5", uri="/b/x.asp",

nonce="2150219db204639164346810000031fabb800044f103d689

0a9e076c63f6", nc=00000001,

cnonce="d2694a8e9e65dd4607378e132f284eb4",

response="e03cce66fa29f14dccd16bb8835c924e"

DISTRIBUTION476

Variable Definition

CERT_FLAGS This is a bitfield with the following masks:
0x0001 : A client certificate was received.
0x0002 : The issuer is not a trusted authority.

CERT_SUBJECT The common name of the subject listed in the client
certificate.

CERT_ISSUER The distinguished name of the issuer listed in the client
certificate.

CERT_SERIALNUMBER The client certificate serial number.

CERT_COOKIE The hash value of the client certificate.

CERT_SERVER_ISSUER, The distinguished name of the issuer listed in the server
HTTPS_SERVER_ISSUER certificate.

CERT_SERVER_SUBJECT, The distinguished name of the subject listed in the
HTTPS_SERVER_SUBJECT server certificate.

CERT_KEYSIZE, The strength, in bits, of the negotiated bulk encryption
HTTPS_KEYSIZE key.

CERT_SECRETKEYSIZE, The strength, in bits, of the server’s private key exchange
HTTPS_SECRETKEYSIZE key.

Table 10.1 Security variables for server applications (continued)

brown10.qxd 7/5/00 11:38 AM Page 476

IIS 477

Va
ria

bl
e

A
no

ny
m

ou
s

B
as

ic
D

ig
es

t
In

te
gr

at
ed

A
U

T
H

_T
Y

P
E

B
as

ic
D

ig
es

t
N

eg
ot

ia
te

R
E

M
O

T
E

_U
S

E
R

qu
ux

\a
lic

e
qu

ux
\a

lic
e

Q
U

U
X

\a
lic

e

LO
G

O
N

_U
S

E
R

qu
ux

\a
lic

e
qu

ux
\a

lic
e

Q
U

U
X

\a
lic

e

A
U

T
H

_U
S

E
R

qu
ux

\a
lic

e
qu

ux
\a

lic
e

Q
U

U
X

\a
lic

e

A
U

T
H

_P
A

S
S

W
O

R
D

w
oo

se
l

<
dp

w
1>

S
E

R
V

E
R

_P
O

R
T

_S
E

C
U

R
E

0
0

0
0

H
T
T
P

S
of

f
of

f
of

f
of

f

Ta
bl

e
1
0
.2

R
es

ul
tin

g
va

ria
bl

es
 o

ve
r

H
TT

P

brown10.qxd 7/5/00 11:38 AM Page 477

DISTRIBUTION478

Va
ria

bl
e

A
no

ny
m

ou
s

B
as

ic
D

ig
es

t
In

te
gr

at
ed

C
lie

nt
 C

er
tif

ic
at

es

A
U

T
H

_T
Y

P
E

B
as

ic
D

ig
es

t
N

eg
ot

ia
te

S
S

L/
P

C
T

R
E

M
O

T
E

_U
S

E
R

qu
ux

\a
lic

e
qu

ux
\a

lic
e

Q
U

U
X

\a
lic

e
Q

U
U

X
\a

lic
e

LO
G

O
N

_U
S

E
R

qu
ux

\a
lic

e
qu

ux
\a

lic
e

Q
U

U
X

\a
lic

e
Q

U
U

X
\a

lic
e

A
U

T
H

_U
S

E
R

qu
ux

\a
lic

e
qu

ux
\a

lic
e

Q
U

U
X

\a
lic

e
Q

U
U

X
\a

lic
e

A
U

T
H

_P
A

S
S

W
O

R
D

w
oo

se
l

<
dp

w
2>

S
E

R
V

E
R

_P
O

R
T

_S
E

C
U

R
E

1
1

1
1

1

H
T
T
P

S
on

on
on

on
on

C
E

R
T

_F
LA

G
S

1

C
E

R
T

_S
U

B
JE

C
T

<
su

bj
ec

t>

C
E

R
T

_I
S

S
U

E
R

<
is

su
er

>

C
E

R
T

_S
E

R
IA

LN
U

M
B

E
R

<
se

ria
l>

Ta
bl

e
1
0
.3

R
es

ul
ts

 o
f

us
in

g
va

ria
bl

es
 o

ve
r

H
TT

P
S

brown10.qxd 7/5/00 11:38 AM Page 478

IIS 479

Va
ria

bl
e

A
no

ny
m

ou
s

B
as

ic
D

ig
es

t
In

te
gr

at
ed

C
lie

nt
 C

er
tif

ic
at

es

C
E

R
T

_C
O

O
K

IE
<
co

ok
ie

>

C
E

R
T

_S
E

R
V

E
R

_I
S

S
U

E
R

<
si

ss
ue

r>
<
si

ss
ue

r>
<
si

ss
ue

r>
<
si

ss
ue

r>
<
si

ss
ue

r>

H
T

T
P

S
_S

E
R

V
E

R
_I

S
S

U
E

R
<
si

ss
ue

r>
<
si

ss
ue

r>
<
si

ss
ue

r>
<
si

ss
ue

r>
<
si

ss
ue

r>

C
E

R
T

_S
E

R
V

E
R

_S
U

B
JE

C
T

<
ss

ub
je

ct
>

<
ss

ub
je

ct
>

<
ss

ub
je

ct
>

<
ss

ub
je

ct
>

<
ss

ub
je

ct
>

H
T

T
P

S
_S

E
R

V
E

R
_S

U
B

JE
C

T
<
ss

ub
je

ct
>

<
ss

ub
je

ct
>

<
ss

ub
je

ct
>

<
ss

ub
je

ct
>

<
ss

ub
je

ct
>

C
E

R
T

_K
E

Y
S

IZ
E

56
56

56
56

56

H
T

T
P

S
_K

E
Y

S
IZ

E
56

56
56

56
56

C
E

R
T

_S
E

C
R

E
T

K
E

Y
S

IZ
E

51
2

51
2

51
2

51
2

51
2

H
T

T
P

S
_S

E
C

R
E

T
K

E
Y

S
IZ

E
51

2
51

2
51

2
51

2
51

2

brown10.qxd 7/5/00 11:38 AM Page 479

The results of the same script invoked via HTTPS are shown in Table 10.3. This
table makes it very clear which elements relate to the server-side certificate
as opposed to the client-side certificate. (Both client and server certificates
in this case were generated by quux.com, the enterprise certificate authority
in my test system.) Here are the values that I didn’t have room for in the table:

<dpw2>

username="quux\alice", realm="preston", qop="auth",

algorithm="MD5", uri="/b/x.asp",

nonce="fb210da32ca30592643468100000cc6d97809692660cb7d6

b596f5e731c1", nc=00000001,

cnonce="8e7206169ad8e237f3fb08d525cc2378",

response="f5faa59c9eeeb7ded74ea8ade38b77cf"

<serial>

29-92-0f-64-00-00-00-00-00-0b

<cookie>

6f245f3a7b3e0d19c84e03786bbf6e41

<subject>

CN=alice

<issuer>

E=no@mail.com, C=US, S=CA, L=Torrance, O=quux.com,

OU=lab, CN=Quux Authority

<ssubject>

C=US, S=CA, L=Torrance, O=quux.com, OU=lab,

CN=wendoline

<sissuer>

E=no@mail.com, C=US, S=CA, L=Torrance, O=quux.com,

OU=lab, CN=Quux Authority

Notes on ISAPI Applications
ISAPI applications are hosted by the appropriate WAM depending on how the
Web application is configured in the metabase with respect to process isolation.
Each thread that enters the ISAPI DLL will be impersonating; the particular
account being impersonated will depend on the mechanisms described earlier.
One interesting difference between IIS 4 and IIS 5 is that on the earlier plat-
form, calls to GetObjectContext failed with CONTEXT_E_NOCONTEXT. This
made it impossible for the ISAPI DLL to call IObjectContext::Create

Instance , which was required in Windows NT 4 to flow the impersonation

DISTRIBUTION480

brown10.qxd 7/5/00 11:38 AM Page 480

token to the configured component being created (in order to perform role-based
access checks based on the client as opposed to IWAM_MACHINE or SYS-
TEM). This requirement was removed in IIS 5 (Brown 1999d), and the client’s
security context appears to flow correctly, at least according to my own experi-
ments.

Notes on ASP Applications
Although ASP is implemented as an ISAPI DLL, it provides its own thread pool
and transfers incoming requests from the WAM thread onto its own thread
before making calls into your scripts. Never fear, ASP also transfers the token
on the WAM thread to its own thread before making the call, so threads enter-
ing ASP scripts will always be impersonating, using the mechanisms described
earlier.

As mentioned previously for ISAPI applications, in IIS 4 it’s critical that you
call IObjectContext::CreateInstance when creating configured compo-
nents; otherwise, the thread’s security context will not be propagated to the new
object. This can either cause all calls to be denied (typical if your WAM is
running under IWAM_MACHINE) or cause all calls to be allowed, because
SYSTEM is not subject to role-based access checks (this happens if your WAM
is running in-process in INETINFO.EXE). This is not a problem at all in IIS 5.

So for IIS 4, it’s critical that scripts use Server.CreateObject to instan-
tiate objects (using <object> tags is also safe). Forgetting to do this can lead
to unpredictable and unsafe behavior.

Another interesting security-related tidbit is that if a client submits a certifi-
cate, you can access all the various information in that certificate from ASP by
using the Request object’s ClientCertificate method. Here’s a simple
ASP script that echoes back all the attributes in the client’s certificate in a table:

<table border=1 cellpadding=3>

<thead><td>Key</td><td>Value</td></thead>

<% for each key in Request.ClientCertificate %>

<tr><td><%= key %></td>

<td><%= Request.ClientCertificate(key) %></td></tr>

<% next %>

</table>

IIS 481

brown10.qxd 7/5/00 11:38 AM Page 481

Notes on CGI Applications
Just as ISAPI and ASP applications run in the logon session of the client (or the
anonymous Internet user)—or at least their threads run in that logon session via
impersonation—so too do CGI applications, except that the entire process is
directed into the client’s logon session, as opposed to just a thread in that
process. This is a great sandboxing measure for CGI applications, but there is a
metabase attribute that can be used to force a particular CGI application (or a
whole host of them; this attribute is inheritable, as are most metabase attri-
butes) into the System logon session. This attribute is known as Create

ProcessAsUser , and it’s set to True by default, which is where you should
leave it unless you really know what you’re doing.

Setting this attribute to False causes CGI applications to run in the System
logon session, in the noninteractive window station. (Not that the latter is in any
way a sandbox; when running as SYSTEMyou can pretty much move to any
window station you desire.)

IIS as a Gateway into COM+
The primary reason for incorporating a Web server in a distributed three-tier
application is to broaden the reach of the application to a multitude of plat-
forms. (Imagine trying to use DCOM to reach clients on all the various flavors
of UNIX, or on a handheld like the Palm OS or a simple appliance like a pager.)
A Web-based front end is the de facto architecture for reaching across the
Internet at large.

However, the natural architecture for a classic three-tier Windows-based
distributed application is to use a Web server simply as a gateway into a more
structured environment built with COM+ components. From a security stand-
point, this type of architecture makes a lot of sense and can help you avoid
an overabundance of application-level security checks. Once again, the less
security-related code in your application, the better off you’ll be.

Because IIS provides a plethora of authentication services that you can
choose declaratively, all you have to do is figure out a way to smoothly move
the client’s security context from the WAM into your COM+ components and let
COM+ role-based access checks do the heavy lifting. ASP goes to great pains

DISTRIBUTION482

brown10.qxd 7/5/00 11:38 AM Page 482

to do its part, by transferring the client’s token from the WAM thread to the ASP
thread. COM+ also gives you a boost by using dynamic cloaking in all COM+
applications by default. Because the WAM is a configured component, it runs
in a process where dynamic cloaking is enabled, and thus each outgoing COM
call you make from an ISAPI application or ASP script will go out using the
client’s security context. (Recall that dynamic cloaking implies that outgoing
COM calls are sensitive to the current thread token; without cloaking turned on,
COM ignores the thread token for outgoing calls.) Things didn’t work nearly as
smoothly in Windows NT 4, as detailed in Brown (1999d).27 Figure 10.11
shows natural three-tier architecture in which IIS acts as the gateway into a col-
lection of COM+ components in the middle tier.

If you plan on collocating the Web server and your COM+ applications on
the same machine (as in Figure 10.12), the security architecture will be very
natural and obvious. (There might even be a farm of these machines, each
with a Web server and a set of equivalent COM+ applications, but that’s not a
problem.) The key is having the Web application and the components it uses
located on the same machine. Because dynamic cloaking is turned on in the
WAM by default, when you make calls from your scripts into your local COM+

IIS 483

27 If you’ve ever wondered what the MTS Trusted Impersonators group in Windows NT 4 was for,
you’ll enjoy reading this article.

SQL
Server

TDS

Application logic
and role-based
access checks

HTTP

ASP
scripts

Figure 10.11 Natural three-tier architecture with a Web front end

brown10.qxd 7/5/00 11:38 AM Page 483

components, role-based access checks will occur naturally against the client’s
security context.

On the other hand, if you plan on putting the Web server on one machine
and your COM+ components on a separate machine (see Figure 10.13), you
have to make sure that the client’s logon session on the Web server will have
network credentials in order to survive the hop from the Web server machine to
the other machine where the role-based access checks will occur. If the client’s
logon session doesn’t have network credentials, you’ll end up making the call

DISTRIBUTION484

SQL
Server

TDSASP
scripts DCOM

HTTP
One Web server in
a potentially larger

Web farm

Application logic
and role-based
access checks

machine
boundary

Figure 10.12 Collocating role-based access checks on the Web server

SQL
Server

DCOM

DCOM

TDS

HTTP
Application logic

One Web server in
a potentially larger

Web farm

ASP
scripts

Figure 10.13 Separating role-based access checks from the Web server

brown10.qxd 7/5/00 11:38 AM Page 484

using a NULL session; if your client was in fact authenticated, you’ve basically
just dropped that information on the floor.

Table 10.4 shows when the logon session for the client will have network
credentials and when it won’t, depending on the type of authentication in use
(this table assumes the client is on a different machine than the Web server).
As you can see, the options are not very pretty. Practically speaking, if the client
is authenticated (and therefore not using the anonymous Internet user account),
unless you’re using Basic Authentication you likely won’t have network creden-

IIS 485

Scenario Network Credentials? Which Credentials?

Anonymous; password No
sync on

Anonymous; password Yes Anonymous Internet user account
sync off in effect at that node in the meta-

base, typically IUSR_MACHINE

Certificate based; No
directory service
mapping on

Certificate based; Yes User account specified in IIS
directory service internal mapping
mapping off

Basic Authentication; Yes Client-specified user name and
interactive logon password
method

Basic Authentication; Yes Client-specified user name and
batch logon method password

Basic Authentication; No
network logon method

Digest Authentication No

Integrated Windows No
Authentication

Table 10.4 Authentication and network credentials

brown10.qxd 7/5/00 11:38 AM Page 485

tials, and you won’t be able to pass the access control responsibilities on to
COM+ components on a different machine in the middle tier.

If you’re adamant about using this multihop architecture, you might con-
sider using a COM+ library package, configured with role-based security, as a
layer between you and the remote objects that your script would normally talk
to directly. These library components can mimic the remote object’s interfaces
(in fact, this code can be generated automatically based on a type library if
you’re smart about it), and can simply delegate calls to the remote object.

The beauty of this model is twofold. First, you don’t want to be making calls
from ASP scripts directly to remote objects, because most scripting languages
double the number of round-trips required to make each method call (think
IDispatch::GetIDsOfNames followed by IDispatch::Invoke). If you
generate the code for the library component layer in a vtable-friendly language
such as Visual Basic, Java, or C++, the IDispatch round-trips will be negli-
gible because they’ll happen locally between your script and the library com-
ponents. When the library components actually make calls across the wire they
can use vtable interfaces and execute the call in a single round-trip.

Second (back to security), your role-based checks will now work as desired
because the COM+ interceptors in the library application will see the client’s
security context. Note that this trick requires Windows 2000, because MTS
library packages have no notion of role-based security.

Miscellaneous Topics
This section contains some miscellaneous tips and traps to watch out for.

Using Client IP Addresses to Control Access
Because HTTP is designed to run over TCP/IP, and TCP/IP headers include the
source IP address and port, it’s possible to grant or deny access purely on the
basis of the client’s host address. Although this is an interesting feature that is
commonly used to block unsophisticated pranksters from accessing Web
resources on a server, unless this policy is backed up with IPSec (which authen-
ticates host addresses cryptographically using Kerberos), simply relying on a
client’s advertised host address to determine access restrictions is very inse-
cure. Spoofing a network address in a TCP request is relatively easy in the big

DISTRIBUTION486

brown10.qxd 7/5/00 11:38 AM Page 486

scheme of things. If you decide to use this feature and want to set this up via
a script, you’ll use the methods defined under the IIsIPSecurity interface.

Mapping Virtual Directories to UNC Paths
Mapping virtual directories to UNC paths is an interesting feature that IIS
supports. Instead of having a virtual directory map to a file system on a
local device, you can direct it to a remote host by specifying a UNC path
(\\machine\share). Remember, though, IIS is always impersonating when it
accesses files for a client, and depending on the authentication mechanism
you’ve chosen, the logon session being impersonated will likely not have net-
work credentials. Thus, there are three metabase attributes for every virtual
directory that come into play when a UNC path is in use:

• UNCUserNameThe user name that should be used in lieu of the
actual client’s identity to access the resource. According to my own
experiments, this must be in authority\principal form, rather than UPN
(principal@authority) form.

• UNCPassword The corresponding password for the account.

• UNCAuthenticationPassthrough Instead of setting a user name
and password, you can set this attribute to True (the default setting is
False) to indicate that you want to attempt to delegate the client’s cre-
dentials if possible to make the additional network hop to the remote
file system.

If all parties involved support Kerberos, and the computer that
hosts the Web server has been designated “trusted for delegation,”
then if the client’s account has not been marked “sensitive and cannot
be delegated” the Lan Manager client will ask for a forwarded TGT for
the Web server to use to delegate the client’s credentials and make
the call. This of course assumes that you’ve enabled Kerberos authen-
tication for the virtual directory (by selecting Integrated Windows
Authentication). There are so many constellations that must align cor-
rectly for this to work that it’s questionable whether it’s worth it to
even enable this option, but as you’ll see, it’s probably no worse than
using a hardcoded user account.

IIS 487

brown10.qxd 7/5/00 11:38 AM Page 487

When you hardcode a user account and password, IIS simply verifies that
the client can be authenticated (period) according to the AuthFlags attribute
for the target resource. Thus, if you have allowed anonymous access, everyone
gets past this hurdle. Once the authentication requirement is satisfied, IIS now
ignores the real client’s identity and instead establishes an interactive logon ses-
sion for the user specified via UNCUserName. (This will of course fail if the
specified user has not been granted the interactive logon right on the machine
hosting the Web server.) IIS impersonates this logon session (as it would nor-
mally impersonate the client’s logon session, or IUSR_MACHINE) and executes
the request. This means that if you are targeting an ASP script via UNC redi-
rection, that ASP script will never see the actual client authenticated by IIS;
rather, it will see the user principal specified via UNCUserName. This can lead
to security holes unless you’re paying attention, so watch your back.

Using RevertToSelf to Reenter the TCB
Imagine that you had a Web application that ran at a process isolation level of
Low (in other words, inside INETINFO.EXE). Although this can be dangerous,
it can also allow you to do very powerful things. However, because all threads
that call into your application from the WAM will be impersonating someone,
you need to rejoin the TCB temporarily if you need to execute privileged code
(for instance, if you want to call LogonUser).

The following piece of code shows how this can be done (I’ve packaged this
in a nonconfigured, in-process COM component so that you can call it directly
from an ASP script):

HRESULT Foo::DoSomethingPowerful() {

HANDLE htok;

OpenThreadToken(GetCurrentThread(),

TOKEN_IMPERSONATE,

TRUE, &htok);

RevertToSelf();

// we're now executing in the TCB!

SetThreadToken(0, htok);

CloseHandle(htok);

return S_OK;

}

DISTRIBUTION488

brown10.qxd 7/5/00 11:38 AM Page 488

This code temporarily removes the thread token, causing the WAM thread to
execute in the security context of the process, in this case INETINFO.EXE , and
the System logon session. Note that the code carefully places the token back on
the thread before returning to the WAM; restoring the environment this way pro-
tects the application from any assumptions that ASP or the WAM might make,
and is purely a precautionary measure.

Calling this code from a Web application configured at Medium or High iso-
lation also allows you to run in the security context of the host process, but in
this case it won’t be the System logon session; rather, it’ll be (typically)
IWAM_MACHINE, which is not very privileged at all, at least by default, and
thus is much less interesting.

Debugging Authentication Settings
If at any time you want to find out what security context your ASP script is run-
ning in, you can download a little component that I built called the token
dumper (from http://www.develop.com/books/pws). This COM component ex-
poses a single method that scripts can invoke:

HRESULT TokenDump([in] long grfOptions,

[out, retval] BSTR* pbstrResult);

The options allow you to limit the output in some ways (see the documen-
tation that comes with the tool for details); just pass -1 if you want to get all
the output. This function will dump the token contents into a pretty-printed
HTML stream, including the details of the thread and process tokens. I’ve found
this tool invaluable in debugging secure Web applications. Here’s how to use it
in an ASP script:

<%= createObject("tokdumpsrv.tokdump").tokenDump(-1) %>

Where to Get More Information
IIS documentation ships with the product itself; just go to a machine that has
IIS installed and surf to http://localhost/iishelp. As of this writing, the IIS 5 doc-
umentation is somewhat out of date, but one hopes that the next service pack
will fix this. The Platform SDK also includes this documentation as well; I’d

IIS 489

brown10.qxd 7/5/00 11:38 AM Page 489

expect this to be updated sooner than the IIS product documentation, but only
time will tell.

Summary
• Public key cryptography reduces the need for shared secrets.
• Public key cryptography does not reduce the need for trust.
• Signatures created with a private key can be verified by anyone,

because the public key is not a secret.
• Certificates provide a way of authenticating a public key.
• At its essence, a certificate is a name and a public key bound together

by the signature of a trusted third party.
• A certificate revocation list (CRL) is a published list of certificates that

have been revoked for one reason or another; when authenticating, it’s
important to check the certificate against a current CRL before assum-
ing it’s valid. Both IE and IIS provide this option.

• Often a hierarchy of trust will be necessary for two parties in different
organizations to develop trust in each other’s certificates, which
results in a chain of certificates, each signed by a more widely trusted
authority.

• An administrator can install a certificate trust list (CTL) for each Web
site to indicate the certificates (typically for root authorities) that he or
she is willing to trust in a client certificate chain.

• SSL 3.0 is the de facto authentication protocol used with HTTP. TLS
1.0 is essentially just SSL 3.1 with the IETF’s stamp of approval, and
PCT is a dead technology.

• SCHANNEL is the name of the security service provider that imple-
ments the aforementioned authentication protocols.

• SSL runs in three modes: mutual authentication, server-only authenti-
cation, and no authentication (which is deprecated).

• HTTPS is simply HTTP over SSL on a designated default port (443).
All communication over HTTPS is encrypted using a conventional
session key exchanged during SSL authentication.

DISTRIBUTION490

brown10.qxd 7/5/00 11:38 AM Page 490

• The IIS metabase is a hierarchical store of attributes that parallels the
structure of the Web sites for a particular machine. Attributes in the
metabase are normally inheritable to make administration easier.

• The Web Application Manager (WAM) was introduced to move Web
applications into safer environments than the System logon session.
These sandboxes not only protect the Web server from crashing but
also significantly reduce the threat imposed by buggy Web applica-
tions and the crackers who exploit them.

• IIS provides a plethora of client-side authentication options, each of
which has pluses and minuses depending on the environment in
which it is used.

• IIS is often used as an HTTP gateway into a world of COM+ compo-
nents. It’s designed to make it easy to pass through the client’s iden-
tity so that COM+ interceptors can provide role-based security checks.

• Whenever you place a network hop between the Web server and the
COM+ components that perform role-based access checks, life
becomes much less automatic, and you need to start thinking about
how to get network credentials for that hop or how to move those
access checks into the Web server process itself.

IIS 491

brown10.qxd 7/5/00 11:38 AM Page 491

brown10.qxd 7/5/00 11:38 AM Page 492

