Chapter 1 - The Players

As a developer, I've always been interested in the nitty-gritty details of whatever technology I'm currently in love with. However, that's not a great way to start talking about a topic that might be completely new to some people. This chapter begins a gentle introductory section that introduces some basic terminology and mechanisms. It pieces together a big picture that you can return to if you start to get mired down in the details later on. It provides just enough detail to keep you turning the pages, but if you start itching to drill down, follow the references to the various chapters and read at your own pace. Even experienced Windows developers should probably start with this chapter, however, regardless of what you choose to read next.

Principals

One of the major benefits of having a secure system is that it's possible to grant or deny access to unique entities (humans or other entities such as computers or services). In security parlance, each unique entity that we can securely identify is known as a principal. Each principal has a unique name and some way of proving its identity to other principals in the system. The mechanism by which one principal proves its identity to another principal is called authentication.

Once you identify the principals in a system, you can control which resources each principal is allowed to use and the ways in which each principal can use them. You can also audit the use of these resources at runtime to help refine the security policy and detect intrusion attempts. Without the concept of a principal, and without a mechanism for allowing a principal to prove its identity, most security policies that you could enforce would be either very limited or completely meaningless.

In a general-purpose operating system such as Windows, each principal is identified via both a human-readable name and a machine-readable identifier. The former makes human use and administration of a computer system feasible, and the latter makes the implementation efficient at runtime. In fact, if the machine-readable identifiers chosen are reasonably different in space and time, it may be feasible to introduce two completely disparate systems into the same working environment (for example, connect them via a network and allow principals in one system to access resources in the other) without too much disruption to either system.
 This is an important feature for scalability, because most networks start small and grow with the organization.


Information about principals is stored in a security database (which is discussed later in this chapter). Each entry in the database is known as an account, and each account represents a principal.
 Be sure to keep the distinction between an account (a record in the security database) and a principal (an authenticatable entity in the system) clear in your mind. This text mostly talks about principals; it will only discuss accounts when specifically referring to configuring security information in the database (for example, when resetting a principal's password, you modify the account for that principal).


In Windows, each principal has a human-readable name that is guaranteed to be unique within a certain scope, but the machine-readable identifier is guaranteed to be globally unique.
 The Windows term for this unique identifier is SID, for security identifier.

SIDs

Most Windows programmers are already familiar with another unique identifier, the globally unique identifier (GUID; also called a universally unique identifier, UUID), which is used by COM (Component Object Model) and DCE (Distributed Computing Environment) developers all over the world. The GUID generation algorithm guarantees uniqueness in space by using an IEEE 802 address, which is a 48-bit unique identifier assigned to each network card by a centralized authority; the algorithm guarantees uniqueness in time by using a combination of the computer's clock, a sequence number that is incremented whenever the clock is adjusted, and a monotonically increasing counter.
 The benefit of using GUIDs is that they are extremely easy to use from a programmer's perspective; each GUID is always 128 bits long.


The SID is conceptually similar to the GUID, in that it also provides uniqueness in space and time. Uniqueness in space is statistically guaranteed by a 96-bit machine identifier that is generated at the time the Windows OS is installed. Its value is tucked away in the registry and is combined with a persistent, monotonically increasing counter to achieve uniqueness in time. However, this is where the similarity ends. SIDs are variable-length data structures, which makes using them more difficult for programmers. On the flip side, SIDs allow more flexibility because they have a structure that a programmer can depend on. A SID is composed of several parts, each of which combines to form a hierarchical naming structure that is quite useful in many cases at runtime.


This hierarchical structure becomes most apparent in the text form in which SIDs are often represented: S-R-I-SA-SA-SA, where S is the letter S, R is the revision number of the SID binary format (currently 1), I is a 48-bit identifier authority value, and SA is a 32-bit subauthority value.


The identifier authority represents the outermost scope of the name, and it identifies a unique namespace via a 48-bit identifier. One can only imagine the original intended use for this field; perhaps it was designed to allow 48-bit IEEE 802 addresses to be used to give any third-party vendor its own namespace. We may never know, however, because SIDs for all principals you create (at least as of this writing) are always issued within the NT Authority namespace, whose value is 0x000005. Other interesting namespaces include the World Authority (0x000001), which is used for the well-known SID S-l-1-0, more commonly known as Everyone. Since the largest identifier authority value currently in use is 0x000005, today it seems as if 45 of those bits are effectively wasted.


Because the 48-bit identifier authority is clearly not enough to guarantee uniqueness for the issuer, it is combined with either a well-known subauthority (such as the BUILTIN domain, which is present on all Windows machines) or a set of subauthorities determined from the unique machine ID assigned when Windows was installed on the machine. As an example, here are two well-known principals that are automatically created whenever you install Windows on a machine:

Administrator: S-1-5-21-XXXX-XXXX-XXXX-500
Guest:         S-1-5-21-XXXX-XXXX-XXXX-501

In place of XXXX, you'll find the 32-bit subauthority values that compose the 96-bit unique ID of the machine that generated the SID. This virtually guarantees that two machines will not generate the same SIDs and thus will not have embarrassing security principal conflicts when connected over a network. Following the subauthority values that define a unique namespace, you'll find a number that identifies the principal within the namespace. In the above example, the number 500 identifies Administrator, and the number 501 identifies Guest.


There is clearly a pattern that you can rely on here. For instance, the number 21 is used to prefix the three machine-specific subauthority values, and the number 501 always represents the special principal named Guest, no matter what machine you happen to be working on. Each of these well-known subauthority values is called a RID (relative identifier), and winnt.h includes definitions for the ones used by the core Windows OS. The appendix includes a list of well-known SIDs that you can form programmatically using these documented RIDs, which is important if you are writing internationalized code that will be localized for multiple countries. Guest is not spelled the same way in German as it is in Spanish, so instead of referring to well-known principals by name, it's much safer (and more efficient) to form the SIDs programmatically.


That being said, given an arbitrary SID or a human-readable principal name, the two functions LookupAccountSid and LookupAccountName can be used to map between them at runtime. An example of where these functions would be appropriate is in a user interface component that allows a human to type in principal names.

Credentials

So far this chapter has discussed the need to identify principals, but has not specified how to distinguish one principal from another at runtime in a secure fashion. Unless you trust everyone who could possibly get access to your system not to pretend to be someone he or she is not, either maliciously or by accident, you need to have a way to prove a principal's identity.


A principal who has the means to prove his or her identity is said to have valid credentials. Generally, there are three questions you can ask at runtime to verify identity:

1. What do you have?
2. What do you know?
3. What are you?


Asking a mixture of these questions makes the system more secure. For instance, when you start your car in the morning, you must have the car keys to prove to the car that you are a valid principal. This is an example of a system in which what you have (in this case, the car keys) determines your credentials.

There are two ways to break this system. The first way is to hot-wire the car, which is an example of simply going around the security system (this is generally the way most bad guys prefer to break in). Generally you'll avoid parking your car in places where it is likely to be stolen in this manner, but there's not a lot you can do to prevent this, other than driving an armored military vehicle. In a computer system, this is equivalent to protecting your corporate network via a firewall. To keep the bad guys from going around your security policy, you need to plug lots of little holes that tend to change from service pack to service pack.


The second way to break this system is to steal someone's keys. The beauty of this approach is that you'll probably be able to turn off the car alarm (by virtue of the fact that the remote control is attached to the keys), and you can steal the car from virtually any location. Most folks who see people getting into cars using a set of keys do not suspect them of being car thieves. In fact, this system is so easy to break that if the owner accidentally drops the keys in the parking lot next to the car, a bad guy can safely escape with the car even in a parking lot crowded with honest people. Generally it's bad when you can accidentally break a system by being careless, so to protect against this, you can add another question to the mix, as in the next example.


Consider an automated teller machine (ATM). In order to use an ATM, you must prove your identity to it by inserting what you have (your ATM card) and typing in what you know (your PIN code). If you accidentally drop your ATM card on the ground next to the machine, a bad guy typically has three chances to guess your PIN code before the ATM swallows the card (probably taking a photograph of the bad guy at the same time). In this case, the system is hard to accidentally misuse, and in order to have any reasonable chance of guessing your PIN code in three tries, the bad guy has to know some information about you, such as your birthday, address, phone number, or social security number. Of course, if you write your PIN code on the back of your ATM card, you'd qualify as an extremely careless principal, but the system couldn't stop someone else from impersonating you.


For systems that require maximal security, the third question is often imposed: What are you? This question inquires about biometric information, which may be collected via a retinal scan, voiceprint, or even a machine that measures the relative length of your fingers. These are all ways of identifying a particular human. When posed in concert with the other two questions already discussed, the only reliable way to break the system involves stealing a bit more than just an ATM card or a set of car keys; doing so would require one seriously motivated individual. Thinking of it in this light makes me prefer not to be a principal in such a system!

Passwords

In general-purpose operating systems such as Windows, passwords traditionally have reigned as the preferred mechanism for proving one's identity. They are simple to use and easy to administer, but passwords only ask the single question what do you know, so principals must choose their passwords wisely to avoid being impersonated by the bad guys.


Imagine for a moment how a password could be used to prove a principal's identity. Say Alice walks up to a machine named BobsMachine and attempts to log in. She provides her principal name, "Alice", and her password, "super-calafragalisticexpialidocious". BobsMachine must verify Alice's password in order to know who Alice is, but this means that BobsMachine must store Alice's password somewhere in long-term storage. This doesn't sound safe; if BobsMachine is compromised, a bad guy could learn Alice's password and impersonate her anywhere she uses that password.


Using cryptographic techniques, however, it is possible for BobsMachine to simply calculate a one-way function (OWF) (typically a cryptographic hash) of Alice's password and store owf (password) instead of simply password. Because the password is only held by BobsMachine (in memory) until Alice is finished typing it, Alice might feel much more comfortable with this scheme. However, it is still possible to perform a dictionary attack against owf (password). If the security database on BobsMachine is compromised, the bad guy only has to calculate owf (guess), where guess is composed of single words (and combinations of words) from a dictionary, until a match is found. In fact, these sorts of attacks are often taken offline by making a copy of the compromised security database and performing the attack from a safe location. In an offline password-guessing attack, the bad guy will use as much computing power as he or she can muster. Thus Alice needs to choose a good password (one that is long and that can't easily be guessed by a dictionary attack).


Most system administrators are well aware of guidelines and programs that can help enforce good passwords, so they won't be enumerated here. The important conceptual point is that even when BobsMachine stores Alice's owf (password) instead of simply password, there is an implied measure of trust between Alice and BobsMachine. Alice trusts that BobsMachine won't attack or otherwise disclose information about her password.
 Alice also trusts that BobsMachine won't allow other principals to masquerade as her without her consent.


Now imagine that Alice wants to log in to several different machines on the network throughout the day. Must each machine store a copy of her password, or owf (password)? If so, Alice is a very trusting individual, because if any one of those machines is compromised, her password could be subjected to an offline dictionary attack.
 There must be a better way.

Authorities

Instead of having every machine on the network store a copy of Alice's password, you could design a scheme in which only one machine, acting as a authority, needs to have information about her password. In this manner, Alice's password only resides in two places: in her long-term memory and in the authority's database. Alice then only has to trust a single machine. Locking down one machine and watching it carefully to avoid compromise is much easier than locking down every machine on the network (most users get annoyed when system administrators start turning on security features that impede their daily work).


Let's call the authority Trent
, for "trusted authority". Trent is a principal (physically he is represented by a process running on a designated machine on the network), and his job is to help Alice prove her identity to other principals such as Bob. To make this work, not only must Alice trust Trent (not to attack her password), but Bob must also trust Trent, because if Trent says "that's Alice", Bob has no other way of verifying what Trent says. Details of how this might be implemented are found in Chapter 7, but for now, suffice it to say that Alice and Bob need to perform some sort of network communication with Trent to help establish each other's identity.


To avoid administrative (and runtime) nightmares, each authority has a namespace from which it can dole out principal names. In many general-purpose operating systems (including Windows 2000), principal names are often written "principal@authority". In earlier versions of Windows NT, principal names are written "authority\principal". Both written forms clearly indicate a scoped name. This translates into a SID that takes the form of S-l-5-21-XXXX-XXXX-XXXX-N, where the Xs are replaced with the unique identifier for the authority, and the N is replaced with a unique 32-bit identifier (unique within that authority's namespace) for the principal. This scheme also clearly shows how the principal is scoped. The name Alice@foo.com is different from Alice@bar.comr just as Alice@foo.com is different from Bob@foo.com.


With Trent in the picture, if Alice wants to change her password, she doesn't need to synchronize this change with each computer in the network; rather, she can change it by simply talking to Trent. This is one obvious example of the benefits realized when introducing an authority into a network. As with most things in life, nothing comes for free, though. Adding Trent to the picture makes the system less efficient at runtime, and it institutes a single point of failure. To solve these problems, Trent may provide service from several machines on the network (using a replicated security database). This means low latency and high availability to principals such as Alice and Bob.

Machines as Principals
I'd like to take a short interlude to make a point that developers really need to keep in mind. In the previous example, Alice (a human) logged into BobsMachine. Both Alice and BobsMachine are principals. It may seem strange to think of a machine as being a principal, especially if you've been used to running Windows NT 4.0 or earlier. If you run User Manager, you won't see any machines listed as principals in the system. However, try running Server Manager for your domain, and you'll see a list of machines. Machines are not first-class principals on Windows NT 4.0; in fact, although a machine can prove its identity to its authority (and is required to do so), a machine cannot prove its identity to any other principals. However, even with this limitation, machines are still principals of the domain, with a unique name and password.


Under Windows 2000, this limitation goes away, and machines are first-class principals. In fact, you'll see machine accounts listed along with user accounts when exploring the Windows directory or when editing per-object security settings (such as the permissions on a file).


Regardless of which of these operating systems you happen to be running, as a developer of distributed systems you should always think of machines as principals. This will help you distinguish between the human sitting behind the console and the machine with which the human is interacting. Failing to make this distinction is one of the many reasons that security programming seems so obscure to many otherwise confident and competent Windows developers.

Authentication

When Alice (a principal) wants to establish a secure channel with Bob (another principal), the system must use some form of handshake to give Bob a warm fuzzy feeling that he is really talking to Alice as opposed to a bad guy masquerading as Alice. Depending on several factors, the warm fuzzy feeling may even be mutual (Alice might be assured that she's really talking to Bob).


If Bob is a machine, and Alice is simply logging in interactively, the handshake might be as simple as Bob popping up a dialog to ask Alice for her password. Once Alice is logged in, anything she types at the keyboard will be implicitly private between her and Bob. Of course, this statement assumes that Bob is a local machine rather than a remote machine being exposed to Alice via some mechanism such as Windows Terminal Services.

This is an example of authentication. As mentioned earlier, authentication is the process by which one principal proves his or her identity to another principal. Sometimes we want to clarify the difference between the case in which Alice proves her identity to Bob but doesn't expect proof of Bob's identity and the case in which there is a mutual warm fuzzy feeling. This latter case is known as mutual authentication, which is clearly a desirable trait in a secure system. In our example, Alice can generally authenticate Bob by simply looking at the PC and verifying that it hasn't been tampered with or replaced with an imposter machine that would like to learn Alice's password.


What happens if Alise logs in to a machine named AlicesMachine (via the interactive authentication protocol previously described) and then starts a process that connects to Bob on Alice's behalf, across a network? Alice is once again talking to Bob, but mutual authentication and confidentiality are clearly going to be considerably more difficult to achieve. In this case, the authentication protocol that Alice and Bob must use cannot be implemented via a simple dialog box, for even if AlicesMachine collects the password from Alice, AlicesMachine cannot simply ship this password across the wire to Bob. A bad guy could be listening on the network using one of a number of freely available network sniffers (this is much easier and safer than physically replacing someone's PC). The protocol used in this case will be a network authentication protocol, which uses cryptographic techniques to introduce Alice and Bob and allow them to have an authenticated conversation with one another. If Alice and Bob so choose, they can even encrypt the packets they send back and forth to hide the contents from bad guys. Imagine for a moment how difficult this problem is, and you'll begin to appreciate what a fascinating subject network authentication really is.


Throughout this text, the term authentication will generally be used whether the process occurs over a network or not, or whether it's mutual or not. Where the situation demands more clarity, the terminology will be more specific.

Establishing a Secure Channel

When Trent helps Alice authenticate Bob over a network, he also helps Alice and Bob establish a secure channel. As long as Alice uses this channel to communicate with Bob, the two principals can assure one another that their communications are authentic. Ensuring authentic communication can mean guaranteeing detection when a bad guy tampers with the data flow by changing, deleting, reordering, or injecting packets. In many cases, it can also mean that communication between Alice and Bob is protected from prying eyes. To make this work, Trent may provide Alice and Bob with a secret cryptographic key (known as a session key). This key is used to sign the data stream to allow the detection of tampering, and perhaps to seal the data stream (via encryption) to foil eavesdroppers.

Domains

The main function that a Windows domain provides is that of Trent: The domain is an authority that allows central storage of password material (either clear text passwords or OWF passwords – it doesn't really matter from a conceptual standpoint). A domain is a scope within which principals may be created; it provides a database to store information about those principals, and it provides authentication services. For security purposes, a domain is a very convenient boundary within which security policies may be defined independent of other domains. Ultimately, a domain is a somewhat abstract concept.


Whereas a domain is abstract, a domain controller (DC) is a very concrete concept: It is a single machine that physically provides these services (authentication, hosting of the security database, and so on). Sometimes a single domain controller will suffice; however, for large domains with thousands of principals, perhaps spread over a large geographic area, multiple physical machines (domain controllers) will be required to provide low-latency and high-availability service throughout the domain. Clearly this will require some form of replication of the database.


The way this replication works is important to a developer who wants to programmatically modify information in the security database. In Windows 2000, the database is physically managed in the Active Directory, and each domain controller maintains a replica of certain parts of the directory. The multimaster replication model in the directory makes updates quite easy: A programmer can simply contact the closest domain controller in the domain and make an update, and the changes will propagate (eventually) to the peer domain controllers (see Figure 1.1).
[image: image1.jpg]
Figure 1.1    Windows 2000 domain controllers


In earlier versions of Windows NT, there is no directory service. The database is stored in the registry of the primary domain controller (PDC), and replicated (read-only) copies are maintained on a set of backup domain controllers (BDC).  Similar to Windows 2000,  all  domain  controllers  provide authentication services and access to the security database, However, as shown in Figure 1.2, without the directory service, any changes to the database must be made on the primary domain controller (the master); these changes will eventually be pushed to the backup domain controllers (the slaves). 
[image: image2.jpg]
Figure 1.2.    Windows NT 4 domain controllers


Other than this difference, you can pretty much think of a domain controller without worrying whether it is a PDC or a BDC (in Windows 2000, there is no such distinction).

Organizational Units

In Windows 2000, it is possible to subdivide a domain into organizational units (OUs). This doesn't change the way authentication works; the domain is still the authority. An organizational unit is simply a smaller boundary with its own security policy, making the administrator's job a bit easier. Often a domain administrator will allow another principal to administer the resources and security policy within a particular OU to help shoulder the load, but this really doesn't affect the fundamental model of how security works in Windows. It's just a more convenient administration model.

Local Security Authority

The Local Security Authority (LSA) is the subsystem in Windows that is responsible for performing the core duties of an authority, that is, providing authentication services. This subsystem runs in a separate, highly privileged process (lsass.exe) on each Windows machine. That's right – each machine that runs Windows has its own built-in authority. What this means is that you don't need to have a sophisticated infrastructure in order to have security on any given machine; rather, you can simply leverage the local authority and create principals within its scope. In this case, the name of the authority is simply the name of the machine itself, and each account created within the authority's database is known as a local account.

What is really neat about the LSA is that it allows tremendous flexibility, making it easy for small systems to grow. An isolated machine has its own LSA and a private security database, and the administrator of the machine can define accounts for each principal that will need access to it. When the administrator decides to connect several previously isolated machines together (via a local area network [LAN], for instance), he or she simply needs to synchronize the passwords of the accounts on each machine. Even though there is no centralized authority, this will quickly provide a simple connected system that can perform network authentication.


To enable this feature for small networks, local accounts have a special characteristic that allows each LSA to authenticate a principal with a local account in a special way. Here's a concrete example: Imagine two machines, MAC1 and MAC2. If the administrator of these machines adds an account Alice to both authorities, you'll of course end up with MACl\Alice and MAC2\Alice, which, as mentioned previously, represent completely separate principals because the authorities are different (the SIDs are, of course, different as well). However, if the passwords are the same on both machines, the LSA is designed to treat them as if they were the same principal (at least with respect to network authentication). So if Alice logs into MAC1 and then starts a process that connects to MAC2 on her behalf, the LSA on MAC2 can authenticate Alice and create a logon session for her, using MAC2\Alice as the principal. To reiterate, Alice is logged in as MACl\Alice on MAC1, and she is now also logged in (via the network) to MAC2 as MAC2\Alice. This is incredibly convenient for small businesses that can't afford a domain controller. (To promote a machine to a domain controller, that machine must be running a more expensive version of Windows.)


As the system grows, this local account mechanism will start to break down (administration is difficult and the trust issue mentioned earlier starts to rear its ugly head). When the administrator is ready, he or she can promote one of the machines on the LAN to become a domain controller, which at a conceptual level simply increases the scope of its authority. For this discussion, let's say the administrator promotes MAC2 to be a domain controller and calls the new domain DOMA. The LSA on MAC2 now provides services not only for the local machine but also for all machines that register as principals within DOMA. Each account that is created within the domain is a domain account, which means that DOMA\Alice will be different from MAC2\Alice or MACl\Alice.


As the system grows further, a potential problem is that security databases are normally stored in the registry, which limits their physical size. This is one reason why in Windows 2000, although local security databases are stored in the registry (as before), each domain security database is tucked away in the directory service, which scales much better.


At each stage of growth, the tools used to manage the security database are similar, reducing the learning curve for the administrator; the programming model is also the same, reducing the learning curve for the developer. The runtime model is the same as well because it is abstracted behind the LSA and programmatic interfaces that shield applications from the differences among various network authentication protocols. (The protocols used to authenticate principals represented by local accounts as opposed to domain accounts are different in Windows 2000.)

Trust

One obvious drawback of introducing a central authority (Trent) into a system is that if a bad guy quietly compromises Trent, he or she can force Trent to say things he wouldn't normally say. This is why we don't all belong to a single global authority. In practice, islands of authority form, with the boundaries being dictated by trust.


For example, take Microsoft and Sun, two fierce competitors.
 Imagine the two companies relying on a single authority (Trent, say) to authenticate principals in both companies. Imagine a machine (with infinite computing power) that could act as the authority in this case. Would that machine be managed at Microsoft's or Sun's campus? Who would be the administrator of that machine, a Microsoft employee or a Sun employee? If Microsoft gets to administer the machine, Sun must trust the administrator at Microsoft not to impersonate Scott McNealy. If Sun gets to administer the machine, Microsoft must trust Sun not to impersonate Bill Gates.


Understanding trust is one of the keys to unlocking the mysteries of security programming. Commercial operating systems such as Windows are designed to be secure, but just what does this promise of security mean? Most developers don't bother to think about security, and many even scoff at it. One reason for this is that the overwhelming majority of Windows developers working in the commercial world happen to also be administrators of their own Windows machine. There doesn't seem to be any security constraints for administrators. To take an example, an administrator is allowed to look at the password hash in the registry where the passwords are stored for the machine itself as well as for any NT services and COM servers that run as distinguished principals.
 What sort of security is this?

The crux of the issue is that there are no guarantees. The measure of a system's security, at least from a conceptual standpoint, is not an objective quantity. Rather, it is subjective and is proportional to the amount of trust that one places in the operating system itself and in the administrators who define the security policy. If you don't trust Trent, or the administrator who operates Trent, you shouldn't ask to become a principal in that system.


In fact, this idea of trust actually extends all the way down into the operating system itself. Consider, for example, a device driver. Code running in kernel mode on a Windows machine has tremendous power there and is not subject to any sort of security checks when accessing resources on the local machine. Device drivers are simply pieces of code that you must trust either to help enforce the security policy of the system or not to interfere or try to subvert that policy either maliciously or accidentally. Certain user-mode code also must be trusted in this way because it's an integral part of the operating system.


The key is to define a boundary around all these trusted elements, and, in fact, there is such a definition. The trusted computing base (TCB) is defined by Federal Standard 1037C as follows:
[The] totality of protection mechanisms within a computer system, including hardware, firmware, and software, the combination of which is responsible for enforcing a security policy. Note: The ability of a trusted computing base to enforce correctly a unified security policy depends on the correctness of the mechanisms within the trusted computing base, the protection of those mechanisms to ensure their correctness, and the correct input of parameters related to the security policy.


In the Windows operating system, kernel-mode code (device drivers, etc.) is considered part of the TCB. By installing an application as a service, an administrator can also add user-mode code to the TCB. What it boils down to is that the administrator of the system defines the boundary of the TCB on that system, and therefore becomes a very powerful entity indeed. The administrator of a given machine, at his or her discretion, can install good applications that provide well-needed functionality in a timely and correct fashion. The same administrator can install evil applications that try to guess your password and send nasty email messages to the first 50 friends you've listed in your address book.


The alternative to this is the military model of security
, in which mandatory access controls reign. If you think you feel constrained by Windows security, consider working at the NSA
 (or its equivalent in your country of choice) for a week; a typical software developer will be dying to rejoin the ranks of the commercial world in less than a day. In determining an appropriate security policy for any given system, the tension between ease of use and bulletproof security is often critical to its success; as in any engineering undertaking, there are trade-offs here that one must choose. Windows provides a very usable system that can be locked down (using discretionary, as opposed to mandatory, access control) to varying degrees of rigidity, but by definition, the administrator of the system ultimately determines the security policy and the boundary of the TCB.

Principal-Authority Trust

If BobsMachine is a member of the Trent domain, BobsMachine implicitly trusts Trent to vouch for (authenticate) principals in that domain. If Alice is a member of the Trent domain who wants to log in to BobsMachine (interactively, say), Trent will obtain proof of Alice's identity and indicate to BobsMachine that Alice is who she says she is. Because BobsMachine doesn't maintain a local copy of Alice's password, he must rely on the trust he has in Trent to feel comfortable that the user typing on his keyboard is really Alice (see Figure 1.3).
[image: image3.jpg]
Figure 1.3.    Principal-authority trust

But what happens when Mary, a member of Trudy's domain, attempts to connect to BobsMachine? Bob trusts Trent, not Trudy. However, Trent may trust Trudy. In this case they can work together to help Bob and Mary authenticate one another (or perhaps they can just hang out together and read tongue-tangling paragraphs like this one).

Authority-Authority Trust

Because domains not only perform the role of Trent (by providing authentication services) but also act as boundaries for implementing security policies, it is often useful to divide an organization into several smaller domains rather than trying to force a single global security policy on the entire organization. Let's look at a concrete example to see how multiple domains in an organization can collaborate.


As an organization grows, one department (say, HelpDesk) might want principals in their domain (which has a security policy designed specifically for HelpDesk) to access resources in another domain (perhaps Sales). One way to make this work would be to move all the principals in HelpDesk over to the Sales domain. This would not only be painful from an administrative point of view, but also would completely change the topography of the security policy of the organization. Prior to the change, HelpDesk and Sales had separate domains with different security policies (perhaps HelpDesk had a very strict account lockout policy because people in the engineering department kept walking around behind the counter trying to guess the one password used by everyone at the desk so the engineers could log in and play pranks on them). After the change, there would no longer be two separate domains, and both departments would share a common security policy (assuming they weren't divided into two separate organizational units). This would make both departments rather unhappy – the Sales department prefers to have a more relaxed policy, whereas HelpDesk prefers a stricter policy. So let's leave HelpDesk and Sales in their own individual domains and find another solution.


Another option is to allow each individual in the HelpDesk domain to trust not only the HelpDesk domain but also the Sales domain. But once again, this would be an administrative nightmare. A much simpler approach to cross-domain authentication is simply to have Sales trust HelpDesk. In this case, when a principal in HelpDesk wants to talk to a principal in Sales, the two authorities cooperate in the authentication mechanism. In order for this collaboration to be secure, HelpDesk and Sales must authenticate with one another.


This is traditionally implemented by having HelpDesk register an account with Sales (complete with a password, just like any other principal) so that HelpDesk can prove its identity to Sales and establish a shared session key. If bidirectional trust is required, Sales will register an account with HelpDesk as well.


In Windows security jargon, these cross-authority accounts are known as trust accounts. You've already seen that any time a principal becomes a member of a domain, there is an implicit trust relationship: The principal trusts the domain. Machines may also join domains, but this is just another example of a principal joining a domain. So machines in a domain also implicitly trust the domain. All that has been done now is to extend this concept to authorities. One authority (Trudy) may establish an account with another authority (Trent) so that Trent's principals can authenticate with Trudy's principals.


Under Windows 2000, trust relationships are usually implicit. Most domains within an enterprise will typically reside in the same Active Directory forest, which allows Windows to set up implicit, bidirectional transitive trust relationships between the domains automatically, following their arrangement in the DNS hierarchy. Transitive means that if several authorities are linked via a path of trust, they all trust one another without having to explicitly set up trust relationships between each pair. Kerberos makes this possible, see Chapter 7 for details.

In earlier versions of Windows NT, trust relationships must be configured manually, and because of the nature of the network authentication protocol on those platforms, these trust relationships are not transitive. This makes administration much more difficult in large enterprises. If a trust relationship is missing in this case, it means that there is a group of principals from one domain who will be completely unknown in the other domain and will not be able to authenticate, or establish a secure channel, with principals in that domain. Lack of trust relationships causes a significant percentage of the pain felt by distributed system developers. The discussion of network authentication protocols later in the book will explicitly show how these trust relationships are used and will help explain the importance of interauthority trust.


Figure 1.4 illustrates the difference between transitive and nontransitive trust relationships. Note that two trust relationships are required if two domains both want to trust each other. Clearly, transitive trusts are much simpler to maintain.

[image: image4.jpg]
Figure 1.4.    Transitive versus nontransitive trust relationships
Summary

· Principals are the entities in a system that can be distinguished from one another in a secure fashion.

· Each principal has credentials that, when presented, provide proof of the principal's identity. This usually takes the form of a password but can also be something more exotic, such as a smart card.

· The process of proving one principal's identity to another is known as authentication. Mutual authentication further ensures that both principals are authenticated to each other.

· Authentication enables the establishment of a secure channel so that the actual data being sent back and forth between the two principals can be verified as being authentic (that is, it hasn't been forged, or perhaps even seen, by a bad guy).

· Machines are also principals
· Each principal is identified via a SID, which is a unique value that has a hierarchical internal structure that also indicates the authority that issued the SID. Well-known SIDs should be constructed programmatically to avoid localization issues.

· A domain is an abstraction that acts both as an authority and as a security boundary within which an administrator can set policies.

· The Local Security Authority (LSA) runs on each Windows machine, providing authentication services.

· Security in Windows is all about trust. Principals trust authorities to provide authentication services.

· Trust extends down into the operating system itself. The trusted computing base (TCB) includes all code that has the potential to enforce or subvert the security policy of a given machine. Administrators, by definition, control what goes in the TCB and what doesn't.

· A single global authority will likely never exist. In practice, islands of authorities form, and these authorities may trust each other so that interauthority authentication is possible.

� A more specific example of this would be connecting two different domains together via a trust relationship, so that principals in one domain can access resources in another domain. I'll talk about domains and trust later in this chapter.

� Although groups have not been discussed yet, each group is also represented by an entry in the security database (you may have heard the term group account). Groups are very different from principals; we can authenticate principals, but not groups. Groups are discussed in Chapter 3

� Technically, this guarantee is based on statistical uniqueness, but the chances of collision are negligible. This also assumes that you've installed Windows in the traditional fashion as op�posed to making a binary copy of someone else's image. (Clearly, unless you do something to change it, the security database will be an exact copy of the original in this case; the folks at � HYPERLINK "http://www.svsinternals.com" ��http://www.svsinternals.com� have some information on this in case you're looking.)

� This algorithm is documented in an (expired) Internet draft filed in February 1998 as draft-leach- uuids-guids-01.txt. Due to some silly pressure from popular media wonks who thought that GUID stood for "global user ID" back in 1999, Microsoft replaced the tried-and-true implementation of UuidCreate with a random number generator from the CryptoAPI. If you still want to use the familiar old algorithm, call uidCreateSequential and party on.

� Given the mud that has been hurled at Microsoft over GUIDs having layer 2 network addresses buried inside them, perhaps this wasn't a bad move after all! See � HYPERLINK "http://www.develoD.com/dbox/guidgen.asp" ��http://www.develoD.com/dbox/guidgen.asp� for a laugh

� Without administrative privileges and physical access to Bob, a bad guy would have a very difficult time stealing the security database in a system with a security-conscious administrator. This is not meant to frighten you, but to point out in a very concrete fashion the inherent trust that A1 must place in the operating system and the administrator of BobsMachine. Security is all about trust, as is discussed later in the chapter.

� If Alice has an account on BobsMachine, it is possible at any time for BobsMachine to mas�querade as Alice (or allow someone else to masquerade as Alice). This concept is revisited in section about trust.

� If Alice has chosen a good password, this may not be a problem. However, obtaining a password hash will allow an attacker to masquerade as Alice on the network (see Chapter 7).

� In homage to Applied Cryptography (Schneier 1996), which was quite an inspirational book for me.

� Understanding network authentication was a turning point in my life; it was only after gaining this understanding that I began to really enjoy security programming because it had become much more concrete.

� One other back door eases the transition from small company to large enterprise: A principal logged in using a domain account on one machine may be authenticated using a local account on another machine that is not in the same domain, provided the principal names and passwords match. However, this is a special case; don't let mechanisms like this fool you into thinking MACl\Alice is somehow related to D0MA\Alice. They are entirely different principals scoped by entirely different authorities.

� At least as of this writing, but Murphy's law dictates that by the time this book is on the shelves, they will have merged into a huge conglomerate.

� Technically, as of Windows NT 4 Service Pack 4, administrators can no longer view the clear-text passwords for NT services (LsaRetrievePrivateData fails with an access denied error), but even in Windows 2000 as of this writing, COM servers and other secrets such as the machine account password are visible.

� Network Security (Kaufman, Perlman, and Speciner 1995) has a very approachable discussion of the difference between commercial and military models of security (or more specifically, discre�tionary vs. mandatory access control).

� For those unfamiliar with the acronym, NSA stands for the National Security Agency, an agency of the U.S. government whose existence was for a long time hidden from even the highest-ranking government officials. The NSA is responsible for making and breaking cryptographic codes, and they guard their secrets with an iron fist.



