Chapter 5 – Window Stations and Profiles

Lots of developers are surprised to find that window stations even exist. Most folks think that window handles are valid anywhere on a machine, and that as long as you don't try to send them across the wire, you can call SendMessage to perform interprocess communication. This works pretty well in 16-bit Windows, up to and including Windows 9x, but often fails miserably in Windows NT and Windows 2000, where security is taken seriously.

This chapter is useful for people developing services and COM servers that are activated by the System or COM SCM, because these SCMs decide in which window station your code will run, which can make a tremendous difference in how your server behaves in production, as well as in the lab. The chapter is even more useful for people who want to emulate the services of the System and COM SCMs.

What Is a Window Station?

The user interface (UI) in Windows has classically been one of the most fine-tuned and well-oiled pieces of machinery on the platform. Back in the early 1990s, shortly before Windows 3.1 shipped, reasonably fast and affordable video hardware was becoming widely available, and consumers began to expect a smooth and responsive user interface. Windows user interface developers quickly became adept at harvesting every ounce of performance from the Graphical Device Interface (GDI) and USER, sometimes even at the expense of program readability and maintainability. But programs that consistently provided a snappy, responsive UI were well regarded in those early days. With today's faster processors and advanced video hardware, developers don't have to work nearly as hard as they used to in order to achieve this, but consumers still place a high value on a responsive UI.

Just as Windows takes a session-oriented approach to authentication via the logon session, so too it takes a session-oriented approach to its user interface, via the window station. Rather than shackling each and every GDI and USER object with individual security settings, Windows simply provides a protected world within which these objects can take a laissez-faire view of security. This approach provides a reasonable security model for user interface components without affecting their performance in any noticeable way. It also keeps user interface programmers happy – they generally don't have to think much about security.

A window station is a secure executive object that encapsulates an entire USER environment, complete with a clipboard, an atom table, and a set of one or more desktops. The security descriptor associated with the window station allows its owner to control access to several aspects of the environment, including which principals are allowed to create windows, menus, and desktops or to view the clipboard contents. Generally the system grants these permissions as a group, and there is no documentation as to how individual permissions are applied in the face of impersonation.

As discussed in Chapter 2, each process is associated with a single logon session and a single window station, and normally window station and logon session boundaries coincide, as shown in Figure 5.1. (I'll talk about the strange-looking window station names shortly.) Also note that a window station is naturally created on demand, that is, when the first process in the logon session starts. (If no processes live in a particular logon session, there's no reason to have a window station, as Figure 5.1 demonstrates.)

[image: image1.jpg]
Figure 5.1. Natural window station boundaries

A window station is truly a private container of windows. Whenever a thread creates a window, that window is forever bound to the window station where it was created. Threads running in processes attached to other window stations cannot see or touch that window. Recall that pointers are process relative, making it meaningless for a thread in process A to share pointers with process В unless В agrees to expose a section of shared memory explicitly (even then, the physical pointer values won't normally coincide). Similarly, window handles are window station relative, making it impossible for threads in process A to touch the windows in process В if A and В live in different window stations; there is no mechanism for sharing window handles across window station boundaries. If a thread in process A wants to talk to windows that live in process В (perhaps via SendMessage or PostMessage), it must temporarily attach process A to B's window station. (Even this back door generally won't work without manipulating window station DACLs, as discussed shortly.) From a practical perspective, one implication of this feature is that you cannot use window messages as an interprocess communication mechanism across window station boundaries. There are two functions that can be used within a process to get or set its corresponding window station, which means that theoretically a process can migrate from one window station to any another during its lifetime. (Practically speaking, this is more difficult than it sounds because access permissions need to be addressed, but those details will be discussed later.) The functions are as follows:

HWINSTA GetProcessWindowStation();

BOOL SetProcessWindowStation(HWINSTA hWinSta);

Window Station Permissions

Given that a window station protects a USER environment, just what sort of permissions can you control with it? The set of window station permissions is documented sparsely, but by doing lots of searches and lots of experiments, I've figured out how most of these permissions affect your life.

· winsta_enumdesktops. A window station handle open with this permission may be passed to the EnumDesktops function.

· winsta_accessclipboard. If a process is granted this permission
, all threads in that process can call OpenCiipboard; otherwise, OpenClipboard will fail With ERROR_ACCESS_DENIED.

· winsta_accessglobalatoms. If a process is granted this permission, all threads in that process can call GlobalAddAtom (and friends); otherwise, these functions fail with error_access_denied. These APIs were classically used with DDE (Dynamic Data Exchange).

· winsta_createdesktop. If a thread is granted this permission
 to the window station, then it may call CreateDesktop. Otherwise, CreateDesktop will fail with ERROR_ACCESS_DENIED.
· winsta_writeattributes. If a process is granted this permission, all threads in that process can call SystemParametersInfo to update system parameters. This permission also controls access to ClipCursor and SetCursorPos.

· winsta_readattributes. This permission works similarly to winsta_writeattributes, controlling who can read system parameters or call GetClipCursor and GetCursorPos.

· winsta_exitwindows. If a process is granted this permission, any threads within that process are allowed to call ExitWindows(Ex) to shut down the logon session associated with the currently executing thread. (In other words, if the thread is currently impersonating, the thread token determines the logon session whose processes should be shut down, while the process token determines whether that thread is allowed to call ExitWindows(Ex) in the first place.) As if this combination weren't mind-twisting enough, for some odd (probably historical) reason, ExitWindows(Ex) can only be called from Winsta0 (the function fails if you call it from any other window station), which implies that this particular permission is only meaningful when applied to Winsta0.

· winsta_enumerate. A thread that calls EnumWindowStations will only see window stations that have granted this permission to the thread.

· winsta_readscreen. If a thread is not granted this permission, it may not call BitBit to read the screen.

Natural Window Station Allocation

Most applications don't create window stations explicitly; rather, the operating system creates them whenever they are required. The basic allocation strategy is simply based on creating one window station per logon session. Each window station has a name, which is normally constructed in the following manner:
Service-0xHIGH-LOW$

where high and low represent the high and low 32-bit hexadecimal values of the logon session identifier. It seems to me that it would have made more sense to prefix these names with "Daemon" instead of "Service," but Microsoft seems to prefer the latter term to describe applications designed to run in the background.
 In any case, the concrete examples that follow will help drive this allocation strategy home as we reexamine the events that occur during system startup.

Daemon Window Stations

As you'll recall from Chapter 4, the first logon session that comes into being is the System logon session. To host processes that live there, the system creates a window station named in the natural way (recall that the System logon session is numbered 0x3e7):
Service-0x0-3e7$

Any process created in the System logon session will naturally be directed into this window station unless the creator explicitly specifies another window station (I'll show how this is done later in the chapter).

During startup, the System SCM launches processes to host services configured to autostart. If one of these services is configured to run as a distinguished principal, the SCM creates a new logon session and then creates a process to host the service, attaching it to the new logon session (see Chapter 4). For the sake of argument, let's say the new logon session ID is 0x4242; in this case the system checks to see if a corresponding window station named Service-0x0-4242$ already exists. If it doesn't already exist (it shouldn't at this point – this is a brand-new logon session), the system creates a new window station with this name and directs the process into it. If the service later calls CreateProcess to start a new process running in the same logon session (0x4242), the system will naturally direct that new process into the same window station.

If two separate services (configured to run in separate processes) both run as the same distinguished principal (Bob, say), then because the System SCM still creates two separate logon sessions (as described in Chapter 4), they will be hosted in separate window stations as well. As will be shown later, this can chew up limited resources pretty quickly on early versions of Windows unless something is done to alleviate the problem.

Most daemon processes are designed to be completely void of user interface components, and this is generally a good strategy. Why then does the system bother giving daemon processes a private USER environment? My best stab at an answer is that sometimes it's impossible to run a daemon without a user interface. For instance, your daemon may rely on some critical third-party component that (to your utter dismay) insists on displaying dialog boxes occasionally. If the system simply failed this request, those components would break. (Perhaps this would be a good thing in the long run, but senior management isn't often as concerned with purity when it comes to shipping a product.) The workaround, however hideous it may be, is to send a message manually to that dialog to dismiss it. Because this all happens in a noninteractive window station, the interactive user (if any) will be unaware that any of this magic is happening.

Ultimately, however, the main reason why window stations exist is to protect the interactive logon session from attacks that leverage USER objects. Imagine that Bob has decided to sandbox a daemon (foobar.exe) by running it as a distinguished principal with very few privileges (it's generally a good practice to run programs at the lowest level of privilege that they require). If that daemon is running on BobsMachine, and Bob decides to log on to the same machine interactively, it would clearly be a breach of security if the daemon could suddenly start running as Bob. The attack is quite simple; the daemon waits for an interactive user to log on, and then sends keystrokes into the input queue (the VBScript function SendKeys works quite nicely):
<Control<>Escape>

"r"

"C:\pathtofoobar\foobar.exe"

<Enter>

As long as Bob is using Explorer as his shell (a reasonable assumption), the previous sequence of keystrokes will cause Explorer to call CreateProcess on foobar.exe, thus starting a copy of the daemon process outside the sandbox, running as Bob. This isn't much of a sandbox – it's more like a sieve. The natural window station allocation strategy guarantees that this cannot happen. Daemons cannot send messages into a window station without first being granted access to enter that window station.

Winsta0

There is only one window station that is allowed to receive input from the keyboard, mouse, and other interactive devices and to produce output that actually gets sent to the screen.
 Having only a single window station with this special status really simplifies the model. However, consider that between system restarts, many interactive users may log in and out at various times, creating several different logon sessions. The system cannot name the interactive window station after each of these logon sessions, because even after an interactive user logs out and his or her logon session is destroyed, the interactive window station must live on, if only to host Winlogon's user interface that collects the next potential interactive user's credentials. Therefore, the interactive window station is named Winsta0, and it is always present, even when no interactive user happens to be logged on.

Winlogon is the first process I've mentioned that flouts the natural window station assignment strategy. Winlogon is hosted in the System logon session and would therefore normally be assigned to the window station named Service-0x0-3e7$, and yet it lives in Winsta0 because it needs to interact with humans. Other daemons also choose to live in the System logon session but prefer to be attached to the interactive window station; the Messenger service
 is a good example – this is the service that displays a window when someone sends a message via net send, or when a printer sends a notification that a print job has finished.

To direct a service into Winsta0, specify the service_interactive_process flag via the dwServiceType parameter to CreateService (when installing the service programmatically), or use the Windows administration tools and check the "Allow Service to Interact with Desktop" box. The next time the process hosting the service starts, it'll be directed into Winsta0.

A potential issue with the approach just described is that Winsta0 has an extremely limiting DACL; only the System and interactive logon sessions are granted access to Winsta0. This means that the only daemons the System SCM will be able to start in Winsta0 are those that run in the System logon session. You don't even have the option of running in Winsta0 if your service runs as a distinguished principal. You can verify this by calling CreateService specifying a distinguished principal along with the service_interactive _process flag (the function fails, as expected).

Here's an interesting caveat. Keep in mind that it is possible to package multiple services into one process. (You indicate this when calling CreateService by setting the service_win32_share_process flag in the dwServiceType parameter, and specifying the same EXE image via the lpBinaryPathName parameter.) If you have services built in this fashion, always be consistent about your usage of service_interactive_process to avoid the following silly race condition: Imagine service A and В are both packaged in myservices.exe and are configured to share the same process via the service_win32_share_process flag. Service A specifies service_interactive_process, whereas service В does not. If A is started first, the process runs in Winsta0; otherwise, the process runs in service-0x0-3e7$. Most developers would prefer to live without these sorts of surprises.

See Figure 2.5 in Chapter 2 for a diagram of a typical set of window stations, including Winsta0.

Daemons in the Lab

Chapter 2 noted that even applications designed to run as daemons typically have a user interface in debug builds: the friendly assert dialog. For daemons running outside Winsta0, it seems as though the assert macro should be avoided. It turns out that this is not the case; with a little planning, you can still use assert (or at least something like it) from any window station you like.

Assertions are typically implemented by calling MessageBox, and the MessageBox API has a special flag (mb_service_notification) you can pass via the fourth parameter that does exactly what you want – it injects a single message box on your behalf into Winsta0, so that even if there is no interactive user present, you'll see the message pop up on top of Winlogon's user interface.
 As of this writing, the implementation of assert provided by the compiler I happen to be using (Visual C++) does not use this flag, which makes this implementation of assert unsafe for use in daemon processes. However, there is a way to hook into the Visual C++ assert implementation, and since many folks reading this book will also be using Visual C++, I thought it would be a useful piece of code to include here.
 Call the _makeAssertSafeForDaemons helper function when your daemon process first starts up, and from then on, assert will do the right thing. I'll leave it to you to read up on this vendor-specific feature (search the Visual C++ docs for _crtSetReportHook for more info).

void __makeAssertSafeForDaemons()
{

_CrtSetReportHook(_crtDbgReportHook);

}
// discussed in the documentation for _CrtSetReportHook,
// this function is called whenever an assertion fires
int _crtDbgReportHook(int reportType, char* message, int* returnValue)

{

if (_CRT_ASSERT == reportType)

{

// here is the key piece of code

switch (MessageBoxA(0,

message,

"SafeAssert",

MB_SERVICE_NOTIFICATION | MB_ABORTRETRYIGNORE

| MB_ICONSTOP))

{

case IDABORT: ExitProcess(1); break;

case IDRETRY: *returnValue = 1; break; // start debugger

case IDIGNORE: *returnValue = 0; break; // continue execution

}

return 1; //no further reporting necessary

}

return 0;
}

Other Window Stations

Although the natural window station allocation scheme works well, you might want to explicitly provide a window station and direct several processes to run in that window station. There are a couple of reasons you might want to do this. First, you might be starting several daemon processes running in distinct logon sessions, and to conserve resources you'd like to force all these processes to share the same window station, as opposed to letting the operating system create private window stations for each individual logon session. Second, you might have a couple of older daemon processes that expect to be able to use window handles to perform interprocess communication (perhaps via the wm_copydata message), and if they run in different window stations this breaks.

Whatever the reason, there is a function that can be used to create a window station on the fly:

HWINSTA CreateWindowStation(

LPTSTR Name,

// in, optional

DWORD
Reserved,

// must be zero

DWORD
DesiredAccess,

// in

LPSECURITY_ATTRIBUTES Attr);
// in

Only members of the Administrators alias are allowed to specify names for window stations (thus, if you're running in the System logon session you can do this). All others must specify NULL for the first parameter, which indicates that the system should automatically come up with a name; in this case, the natural name (based on the logon session identifier) is used.

The following code creates two distinct window stations, returning a handle to each:

HWINSTA hi, h2;

h1 = CreateWindowStation(L"Foo", 0, READ_CONTROL, 0);

h2 = CreateWindowStation(L"Bar", 0, READ_CONTROL, 0);

If the Foo window station already existed prior to the call to CreateWindow station, h1 would refer to the existing window station Foo, somewhat similar to the way the CreateXXXX functions in KERNEL32 (CreateMutex, etc.) work.

The following code creates two handles to the same window station, whose name is based on the logon session identifier:

HWINSTA h1, h2;

h1 = CreateWindowStation(0, 0, READ_CONTROL, 0);

h2 = CreateWindowStation(0, 0, READ_CONTROL, 0);

Just for kicks, I ran this code snippet from a process in Winsta0, and the resulting window station was named service-0x0-4916$ (after my logon session LUID). Since only administrators can create named window stations, this effectively means that unless you're an administrator, you'll only be able to access the natural window station named after your logon session, although as you can see from this example, Winsta0 is a special case.

To discover the name of a window station, call the helpful function GetUserObjectlnformation.

BOOL GetUserObjectInformation(

HANDLE Object,

// in, handle to winsta/desktop

int Index,

// in, type of info you want

PVOID plnfo,

// out, pointer to buffer

DWORD Length,

// in, buffer size in bytes

LPDWORD pLengthNeeded);
// out, buffer size required

The Object parameter can either be a window station or desktop (I'll discuss desktops shortly), and the index refers to one of four possible pieces of information:

· uoi_name. Indicates the name of the window station.

· uoi_type. For window stations, indicates WindowStation; for desktops, indicates Desktop.

· uoi_flags. For window stations, this indicates whether this is an interactive or a noninteractive window station; for desktops, this indicates whether or not alternate principals can install hooks. In both cases, the function indicates whether the handle specified is inheritable (this second piece of information can also be retrieved by calling GetHandleInformation).

· uoi_user_sid. For the interactive window station and any of its desktops, this request returns the text form of the logon session SID for the interactive user. If there is no current interactive user, or if you make this request of a noninteractive window station or desktop, GetUserObjectSecurity will succeed, but the length specifier (*pLengthNeeded) will be set to 0 to indicate that no SID is associated with the object. This gives daemons a quick (if a bit kludgy) way to determine whether anyone is currently logged on interactively (although by the time you're ready to process this information, the user could already be logging off).

GetUserObjectInformation normally writes a null-terminated string to the buffer specified by pInfo, except in the case of uoi_flags, in which case it writes a data structure of type userobjectflags.
Exploring Window Stations

One of the best ways to learn about window stations is to write a program that enumerates them and dumps out interesting information about them. You can do this via the EnumWindowStations function.

typedef BOOL (CALLBACK* WINSTAENUMPROC)(LPTSTR, LPARAM);

BOOL EnumWindowStations{

WINSTAENUMPROC EnumProc,
// in, ptr to callback function

LPARAM lParam);

// in, user-defined parameter

EnumWindowStations follows the long-standing tradition of Windows enumeration functions, in which you write a callback function that is called once for each object being enumerated. The second parameter is typically used to pass a pointer to a user-defined data structure to give your callback function some extra information that it needs in order to do its work. The callback function must be declared following the signature shown earlier for WINSTAENUMPROC.

Here's an example that illustrates how you can enumerate all the window stations on your machine (at least those that grant you access to enumerate them; if you have been assigned the Administrators alias, then you'll normally be able to see all of them):

BOOL CALLBACK _myWinstaEnumProc(wchar_t* pszName, LPARAM lp)
{

// just append the name (and a newline) to the output

wchar_t* pszOutput = (wchar_t*)lp;

lstrcat(pszOutput, pszName);

lstrcat(pszOutput, L"\n");

return TRUE; // continue enumerating

}

void _listWindowStations()
{

// I'm punting on buffer management for simplicity

wchar_t szOutput[4096];

szOutput[0] = L'\0';

// tell the system to call _myWinstaEnumProc once

// for each window station that we are allowed to see

EnumWindowStations(_myWinstaEnumProc, (LPARAM)szOutput);

// output window stations list

MessageBox(0, szOutput, L"Window Station List",

MB_SETFOREGROUND | MB_ICONINFORMATION);

}

On a Windows 2000 machine (as well as a Windows NT 4 machine with the Option Pack), the previous code results in the following output:

WinSta0

Service-0x0-3e7$

X78B95_89_IW

The window station with the custom name appears to be used by Internet Information Server (IIS), at least based on my probing.

Closing Window Station Handles

Because window stations are executive objects, handles to window stations are stored in the same per-process handle table as other executive object handles and can be duplicated using DuplicateHandle, even though they have their own typedef (hwinsta). The only oddity about window station handles is that there is a special function provided for closing them:

BOOL CloseWindowStation(HWINSTA Winsta);

This function works just like CloseHandle, but it keeps you from accidentally closing the window station handle associated with the current process. Before calling CloseHandle, CloseWindowStation checks to see if the handle specified by Winsta is safe to be closed, and if not, simply returns false. The following code results in a runtime exception:

CioseHandle(GetProcessWindowStation()); // whoops!

The exception thrown is 0xC0000235, which indicates that this handle has been protected from closure.
 The moral of the story is to use CloseWindowStation instead of CloseHandle to close arbitrary handles to window stations, because GetProcessWindowStation will typically give you a protected handle that the system is using internally as well.

// safe, actually does nothing

CloseWindowStation(GetProcessWindowStation());

Window Stations and Access Control

Of all the window stations that need protection, Winsta0 is critical, because this is where all visible USER objects in the system will live. An example of a typical attack was provided earlier, in which a daemon was able to hijack the interactive user's logon session. Thus you can expect to see very tight security on Winsta0 to protect against these kinds of shenanigans
.

When no interactive user exists, Winsta0 has a DACL that looks something like this (a bit more detail will be provided later once desktops have been discussed):

grant 0x000F037F to SYSTEM

grant 0x00020166 to Administrators

The hexadecimal numbers shown here are a bitwise combination of the permissions being granted or denied. Without going into too much detail, this implies that the System logon session has all possible access to Winsta0 (0xF037F is the combination of all the possible permissions for a window station), and that anyone with the Administrators alias in his or her token is granted the ability to do most things in the window station except read the contents of the screen.

When an interactive user logs in via Winlogon, the system completely reconstructs the DACL on Winsta0 (from the ground up) to allow the new interactive logon session to have all possible access permissions to Winsta0. Note that it's the logon session that's granted these permissions, as opposed to the principal who is logged in. For instance, if Alice logs in (via Winlogon) to AlicesMachine, AlicesMachine establishes a new logon session for Alice; for kicks, let's say the logon session SID is S-l-5-5-0-0x4242. The new DACL on Winsta0 will look something like this:

grant 0x000F037F to SYSTEM

grant 0x00020166 to Administrators

grant 0x000F037F to S-l-5-5-0-0x4242

grant 0x00000024 to Alice

As you can see, although very limited permissions are granted to Alice the principal (access to the clipboard and global atoms), Alice's logon session is granted full permission to Winsta0. This implies that just because Alice is logged on interactively, daemon processes that also happen to be running as Alice – but in alternate logon sessions – won't necessarily be able to have their way with Winsta0. The operating system has granted access to a specific instance of Alice on AlicesMachine – to be precise, the instance authenticated by Winlogon.

Noninteractive window stations generally don't follow this ultra-fine-grained convention; for instance, a window station created by the System SCM to host a daemon process running as Alice will have a DACL that looks something like this:

grant 0x000F006E to Alice

grant 0x00000100 to Administrators

This DACL allows Administrators to enumerate the window station (in other words, an administrator can discover its presence by calling EnumWindowStations), and Alice (the principal) is granted a slightly restricted set of access permissions; she can do pretty much anything she'll ever need to do in a noninteractive window station.

It's important to note that the example just discussed was contrived to drive home the unique convention used in constructing the Winsta0 DACL. Generally speaking, daemon processes run in distinguished accounts that are not normally used by interactive users (that is, Alice the human won't typically run daemon processes under her own personal account). This policy is often enforced by revoking the "Log on locally" right for daemon accounts, and instead granting those accounts the right to alternate types of logon sessions, "Log on as a service" or "Log on as a batch job", depending on whether you plan on having the System SCM or the COM SCM start the process.

Desktops

A window station is an executive object associated with a process. It provides a secure USER environment, and each executing process must be attached to exactly one window station. A desktop, on the other hand, is an executive object that is associated not with a process, but with a thread. Each window station can have any number of desktops, but using multiple desktops is only interesting in Winsta0. (Thus, unless explicitly noted, assume that all processes and desktops discussed in this section are hosted in Winsta0.)

When a process is launched (via CreateProcess and friends), the system chooses a window station and desktop (based on a documented algorithm that is discussed later in this chapter). The primary thread of the process starts life on this predetermined desktop, and all new threads created in the process (via CreateThread) will also start life on that same desktop. Threads can dynamically migrate between desktops by calling SetThreadDesktop, but this is the exception to the rule – normally a thread lives a full and productive life attached to a single desktop. To get the current desktop associated with a thread, call GetThreadDesktop; to close a desktop handle, call CloseDesktop (this function behaves similarly to CloseWindowStation, discussed earlier).

BOOL SetThreadDesktop(HDESK Desktop);

HDESK GetThreadDesktop(DWORD ThreadId);

BOOL CloseDesktop(HDESK Desktop);

Here's what makes desktops interesting from a security standpoint: windows created on a particular desktop are only visible (and can only receive messages from input peripherals such as the keyboard and mouse) when that particular desktop is active. You can determine the currently active desktop by calling OpenInputDesktop (this function only works if called from Winsta0, because only desktops in Winsta0 can ever be active):

HDESK OpenInputDesktop(

DWORD Flags,

// in

BOOL Inherit,

// in, governs handle inheritance

DWORD DesiredAccess);
// in, desired access mask

The first parameter, Flags, is normally 0; the only valid flag is df_allowotheraccounthook (which I must admit I've not found a use for in this context). The Inherit parameter determines whether the resulting handle will be inheritable, and finally, DesiredAccess allows you to state your intentions (how you intend to use the handle). Because a desktop is a secure executive object, this function first performs an access check, comparing the active desktop's DACL with the security context of the thread making the call; it will fail if the access permissions requested aren't granted.

So what does all this mean? With an understanding of window stations and desktops, you are now poised to create a hidden user interface that can only be accessed by principals of your choosing (note that a desktop isn't nearly as strong a sandbox as a window station, as window messages may be sent across desktop boundaries within the same window station, but desktops do allow you to restrict hooks). By creating a private desktop in Winsta0, secured with a restrictive DACL, and by choosing that desktop when creating the process hosting your user interface, you create a private environment that only certain users can see. Of course you'll need to provide a mechanism to allow a user to attempt to switch from the normal desktop (Default) to your private desktop. The function you'll need to call to activate your desktop is SwitchDesktop, and it's also very straightforward:

BOOL SwitchDesktop(HDESK Desk);

One of the permissions a desktop DACL can grant or deny is desktop_switchdesktop, and whoever wants to call SwitchDesktop must have been able to acquire a handle with these permissions (either via OpenDesktop, OpenlnputDesktop, or CreateDesktop). If, for instance, you want to switch to an existing desktop whose name you know, you'll need to call OpenDesktop to acquire a handle to the desktop, specifying desktop_switchdesktop permissions.

HDESK OpenDesktop(

LPTSTR Desktop,

// in, desktop name

DWORD Flags,

// in

BOOL Inherit,

// in, governs inheritance

DWORD DesiredAccess);
// in, desired access mask

This function works like OpenInputDesktop, except that the first parameter allows you to choose any desktop you like. Bear in mind that desktop names are scoped by window stations, and so the name of the desktop is evaluated based on the window station to which the calling process is attached at the time the call is made. What this means is that if you'd like to get a handle to the desktop Winsta0\Foo, you'd better first make sure your process is attached to Winsta0. (A daemon process running in a noninteractive window station can temporarily migrate to Winsta0 – assuming it has access permissions to do so – before making the call to OpenDesktop.)

Here's an example of a helper function that activates a desktop by name:

bool _switchToDesktop(const wchar_t* pszDesk)

{

// open the specified desktop with the intention of switching

bool bSucceeded = false;

HDESK hd = OpenDesktop(pszDesk, 0, 0, DESKTOP_SWITCHDESKTOP);

// make the switch

if (hd)

{

if (SwitchDesktop(hd)) bSucceeded = true;

CloseDesktop(hd);

}

return bSucceeded;

}

Except for a couple of reserved parameters, the function for creating desktops is similar to the CreateWindowStation function described earlier.

HDESK CreateDesktop(

LPCTSTR Desktop,

// in, name

LPVOID Device,

// reserved

LPVOID DevMode,

// reserved

DWORD Flags,

//in

DWORD DesiredAccess,

// in

LPSECURITY_ATTRIBUTES Attr);
// in

The most notorious (and somewhat annoying) requirement of this function is that you must ask for at least desktop_createwindow access permissions, because the operating system creates at least one window in the process of creating a desktop. Forget this and you'll be scratching your head wondering why the function fails with error_access_denied.

The following function creates a new desktop, switches to it, and then displays a message box on the blank desktop before switching back.

void _baitAndSwitchDesktop()

{

// first remember the old desktop

// so we can switch back

HDESK hdOld = GetThreadDesktop(GetCurrentThreadId());

// create a desktop (assuming it doesn't already

// exist), with the intention of switching to it

const DWORD grfAccess = DESKTOP_CREATEWINDOW | DESKTOP_SWITCHDESKTOP;

HDESK hdNew = CreateDesktop(L"Foo", 0, 0, 0, grfAccess, 0);

if (hdNew)

{

// migrate our thread to the Foo desktop

// and make it the active desktop

SetThreadDesktop(hdNew);

SwitchDesktop(hdNew);

// display a stunning user interface

MessageBox(0, L"Hello World!", L"Foo Desktop", 0);

// switch back

SwitchDesktop(hdOld);

SetThreadDesktop(hdOld);

// because this is the last reference to the

// desktop Foo, the operating system destroys it

CloseDesktop(hdNew);

}

CloseDesktop(hdOld);

}

Daemon processes running in the System logon session are normally granted full access permissions to the interactive window station (recall the DACL shown earlier), so by simply adding a few function calls to the previous code, you can first migrate the daemon process into Winsta0 and then switch to the desktop you want. This is sometimes used as a brute-force approach for piercing into Winsta0 and displaying a user interface on the interactive desktop. Because the code is so similar to the previous code, I won't repeat it here, but I will demonstrate how you must always migrate the process into the target window station first if you want OpenDesktop and friends to have any meaning there:

HWINSTA hwsOld = GetProcessWindowStation();

HWINSTA hwsTarget = OpenWindowStation(L"WinstaO", FALSE, READ_CONTROL);

SetProcessWindowStation(hwsTarget); // do this first!
HDESK hdTarget = OpenDesktop(L"Default", 0, FALSE, DESKTOP_SWITCHDESKTOP);

This technique is mentioned for completeness; most experienced developers generally avoid writing daemons that directly host a user interface (even though the code to make it work is obscure enough to confer a large dose of job security). If a daemon needs to grow a user interface, it's usually best to split the user interface into a separate program that a human can simply launch at will; this naturally places it in the interactive window station on the active desktop, leaving the daemon in a noninteractive window station where it belongs. Of course, in this case some form of interprocess communication will be necessary between the two processes (COM is great for this).

Although window handles can be used across desktop boundaries (within same window station, of course), functions such as EnumWindows called desktop A won't see windows living on desktop B. Pressing Alt-Tab from top A lists top-level windows running on A. Pressing Alt-Tab from desktop B lists top-level windows running on B, and so forth. The human sitting behind. the console really can't tell the difference (especially if his or her shell, typically EXPLORER.EXE, is running).

Winlogon is a great example of an application that uses private desktops to secure access to its user interface. At system startup, Winsta0 has two desktops: Default and Winlogon. The Winlogon desktop is what Alice sees before she logs in to her computer in the morning. Once Alice is authenticated, the system rebuilds the DACL on Winsta0 and the Default desktop (granting Alice's logon session full access), and then switches to the Default desktop, directing the shell process onto that desktop. If Alice later presses Control-Alt-Delete, the system switches back to the Winlogon desktop, thus hiding all Alice's work in progress and allowing Alice to log out, shut down the machine, or lock her workstation. In Windows 2000 the workstation can be locked programmatically via a call to LockWorkstation.

BOOL LockWorkstation();

The system creates a third desktop with the name screen-saver whenever a screen saver starts running
 (and destroys this desktop when the screen saver is deactivated). This leads us to a somewhat subtle point about the Winsta0 DACL, which is discussed in the next section.

Winsta0 and ACL Inheritance

Chapter 6 discusses the details of ACL inheritance, so without going into detail about how ACL inheritance works, let me point out a subtle but critical issue for those considering modifying the DACL on Winsta0. The system-provided DACL on Winsta0 normally contains several inherit-only entries that are used to construct the default DACL for new child desktops (to keep things simple, these were omitted earlier). The critical issue is that if you clobber these entries, the resulting DACL on the screen-saver desktop will be empty, thus denying access to the screen-saver program (and everyone else, for that matter). This opens a subtle security hole: when the human using the terminal goes to lunch, he or she may rely on a password-protected screen saver to protect his or her desktop. However, when the screen saver's process starts on its newly created desktop, the process will immediately abort with a rather nasty dialog (see Figure 5.2 for an example).

[image: image2.jpg]
Figure 5.2. Access denied!

Here's what the DACL on Winsta0 looks like, including the inheritable entries:

grant 0x000F037F to SYSTEM

grant 0xF0000000 to SYSTEM, inherit only

grant 0x00020166 to Administrators

grant 0x200000C7 to Administrators, inherit only

grant 0x000F037F to S-l-5-5-0-0x4242

grant 0xF0000000 to S-l-5-5-0-0x4242, inherit only

grant 0x00000024 to Alice

The entries for SYSTEM, Administrators, and Alice's logon session SID now grant access not only to Winsta0, but also to any desktops that might be created there. The inherit-only entries do not apply to Winsta0; instead, they are stored until a new desktop is created as a child of Winsta0, at which point these entries are used to build the default DACL for the new desktop. Be careful to preserve these inherit-only entries if you modify the DACL on Winsta0, as mentioned earlier. Chapter 6 discusses a nasty bug in the SetEntriesinAcl API that can bite you on Windows NT 4.

Desktop Permissions

As with the window station access permissions, I've provided a list of desktop access permissions, along with any extra insight that I can offer.

· desktop_createwindow. If a process is granted this permission, all threads in that process can call CreateWindow(Ex); otherwise, these calls will fail with error_access_denied.
· desktop_createmenu. If a process is granted this permission, all threads in that process can call CreateMenu or LoadMenu; otherwise, these calls will fail with error_access_denied.
· desktop_hookcontrol. If a process is granted this permission, all threads in that process can call SetWindowsHookEx to install all types of hooks (local or global) except journal hooks, which are explicitly controlled by the next two permissions.

· desktop_journalrecord. If a process is granted this permission, all threads in that process can call SetWindowsHookEx to install a wh_journalrecord hook. Note that the process does not need the desktop_hookcontrol permission in this case.

· desktop_journalplayback. If a process is granted this permission, all threads in that process can call SetWindowsHookEx to install a wh_journalplayback hook. Note that the process does not need the desktop_hookcontrol permission in this case.

· desktop_enumerate. If a thread is granted this permission on desk top X, the thread can discover desktop X when enumerating via EnumDesktops.
· desktop_switchdesktop. This one is pretty clear: If you can successfully open a desktop handle with this permission, you'll be able to call SwitchDesktop to switch to it. Because this permission must be acquired when the handle is opened, it is sensitive to whether you are impersonating when you open the handle.

· desktop_readobjects and desktop_writeobjects. These permissions control access to USER objects on the desktop. As with winsta_readscreen, there is very little documentation on what these permissions really control. In my own tests, I discovered that without these permissions, it's impossible to initialize user32.dll, and thus the host process would fail to start.

Desktop Limitations

In Windows NT 4, there is a nasty configuration problem that limits the number of desktops that can exist on a given machine to 48/3 = 16 desktops. The arithmetic comes from a Knowledge Base article (Q169321) that discusses a 48MB shared memory section managed by USER that is divided among all the desktops on a machine. By default, each desktop, regardless of whether it lives in Winsta0 or not (in other words, regardless of whether it will host interactive applications), reserves a 3MB chunk of linear address space from that shared section.

Why does this matter? Consider that each service process that runs as a distinct principal gets its own private logon session (even two service processes that run as the same principal get distinct logon sessions). Because window station boundaries normally parallel logon session boundaries, each of these processes ends up in a distinct window station. Each of these window stations will have a distinct desktop. In practice, this generally means that you can run about 12 service processes or COM server processes (as distinguished principals) on a single Windows NT4 machine.

Both the Option Pack and Service Pack 4 sought to address these problems in different ways. The Option Pack, when it is installed, automatically applies the fix suggested by the Knowledge Base article mentioned earlier (the fix is to adjust a registry setting that reduces each noninteractive desktop's consumption of the shared linear address space by a factor of six). Service Pack 4 added an interesting twist to the COM SCM. When two COM servers run as the same distinguished principal, as long as they are started (by the COM SCM) within a few minutes of one another, the SCM will use the same logon session (it basically caches tokens for a short period), and thus the two processes will share a single window station and desktop. Both these fixes are present in Windows 2000 at the time of this writing, and make this problem pretty much a non-issue.
Jobs, Revisited

The use of job objects to limit authorization attributes was discussed in Chapter 4, but there's another category of limitations that looks and smells very much like those provided by window stations. Here's the data structure you must fill out in order to configure a job's UI-related limitations, along with the documented restriction flags:

typedef struct _JOBOBJECT_BASIC_UI_RESTRICTIONS

{

DWORD UIRestrictionsClass;

} JOBOBJECT_BASIC_UI_RESTRICTIONS;

#define JOB_OBJECT_UILIMIT_HANDLES

0x00000001

#define JOB_OBJECT_UILIMIT_READCLIPBOARD

0x00000002

#define JOB_OBJECT_UILIMIT_WRITECLIPBOARD

0x00000004

#define JOB_OBJECT_UILIMIT_SYSTEMPARAMETERS
0x00000008

#define JOB_OBJECT_UILIMIT_DISPLAYSETTINGS
0x00000010

#define JOB_OBJECT_UILIMIT_GLOBALATOMS

0x00000020

#define JOB_OBJECT_UILIMIT_DESKTOP

0x00000040

#define JOB_OBJECT_UILIMIT_EXITWINDOWS

0x00000080

The handles limitation indicates that processes inside the job will be blind to any USER objects created by processes outside the job. Unlike a window station, though, this job limit only restricts processes inside a job from seeing out. Processes outside the restricted job (assuming they share a window station) can see USER objects created by processes inside the job. Also, unlike a window station, it's possible for a process to "brighten" an individual USER object so that a particular job can see it, even if that job has been blinded with the HANDLES limitation. This can be done via the UserHandleGrantAccess function, introduced in Windows 2000:

BOOL UserHandleGrantAccess(

HANDLE hUserHandle,
// in

HANDLE hJob,

// in

BOOL bGrant);

// in

The readclipboard, writeclipboard, globalatoms, desktop, and exitwindows job limitations control access to the same types of objects as the permissions already described for window stations. The systemparameters and displaysettings limitations specifically protect calls to SystemParameterslnfo and ChangeDisplaySettings, preventing processes in a job from making sweeping changes to the system.

You might be wondering what the difference is between jobs and window stations, since they seem to overlap somewhat (at least with respect to UI limitations). Jobs can be used to create sandboxes smaller than even a window station.
 In contrast with a window station, the limitations a job imposes are principal agnostic: if you specify a limitation on a job, all processes in that job will be controlled by that limitation, regardless of the security context, unless of course the job is still accessible and a principal who has access permissions to do so changes the job's configuration. You can easily eliminate this loophole by closing all handles to the job object; once the last handle to a particular job is closed, the job can never be opened again (named jobs lose their name after being closed). Even after a job becomes inaccessible for reconfiguration, its limitations continue to be enforced, even as new child processes enter the job.

Processes

I assume any systems programmer reading this book will likely have called CreateProcess once or twice in his or her career. However, there is a much more powerful function called CreateProcessAsUser that takes a single extra parameter: a handle to a token. This allows you to inject a new process into the logon session of your choice, enabling you to create what I like to call a logon session broker
, kind of like the System SCM and COM SCM, both of which launch processes upon request in the logon session of their choice. You will need a couple of privileges in order to call this function, namely, SelncreaseQuotaPrivilege and SeAssignPrimaryTokenPrivilege
.

The System logon session has both these privileges, and code that calls CcreateProcessAsUser normally runs there.

BOOL CreateProcessAsUser(

HANDLE Token,

// in

LPCTSTR ApplicationName,

// in, optional

LPTSTR CommandLine,

// in, optional

LPSECURITY_ATTRIBUTES ProcessAttrs,

// in, optional

LPSECURITY_ATTRIBUTES ThreadAttrs,

// in, optional

BOOL InheritHandles,

// in

DWORD CreationFlags,

// in

LPVOID Environment,

// in, optional

LPCTSTR CurrentDirectory,

// in, optional

LPSTARTUPINFO Startuplnfo,

// in

LPPROCESS_INFORMATION ProcessInfo);

// out

Assuming that you already have a token from somewhere (perhaps you called LogonUser or one of the various impersonation functions to impersonate a client), the trickiest decision you have to make when calling this function is which window station should host the process. If you call this function the same way most folks call CreateProcess – that is, by passing a startupinfo structure that's been completely zeroed) out – you'll almost always run into trouble. The third parameter of startupinfo is lpDesktop, which has four (somewhat subtle) possible settings:
· "bar" This setting implies that the new process should be placed in the caller's window station, and the primary thread should start life on the desktop named bar in that window station.

· nfoo\bar" This setting implies that the new process should be placed in the window station named foo, and the primary thread should start life on the desktop named bar in the window station named foo.
· NULL (a null pointer) This setting implies that the new process should be placed in the caller's window station.

· "" (an empty string) This setting implies that the system should use the natural window station allocation policy, creating a new window station for this logon session if it doesn't already exist (plus a default desktop).

If you really know what you're doing, it's possible that one of the first three options will work, but you may very well need to change the DACL of the target window station (and desktop) to make this work. The classic case in which this occurs is when you'd like to start an interactive process (which implies "Winsta0\Default"). Remember how tight the DACLs on these objects can be. You'll usually need to modify these DACLs somewhat to allow this, and the conventional way to do this is to grant access to the logon session SID for the logon session hosting the new process.

If you are simply launching a noninteractive daemon, you should use the fourth option (passing an empty string) to allow the system to follow the natural window station allocation scheme. If the system needs to construct a new window station and desktop pair for the logon session you are using, it will set up the DACLs on these objects correctly.

What happens if you call CreateProcessAsUser and direct the process into a window station or desktop (or both) that doesn't grant permissions to the logon session/principal represented by the token? You'll see a variant of the nasty dialog mentioned earlier (see Figure 5.2).

Here is some code that demonstrates launching a daemon in a new logon session and window station without running into window station headaches:

bool _startDaemonAsUser(

const wchar_t* pszAuthority,

const wchar_t* pszPrincipal,

const wchar_t* pszPassword,

const wchar_t* pszCommandLine)

{

HANDLE htok;

BOOL bOk = LogonUser(pszPrincipal, pszAuthority, pszPassword,

LOGON32_LOGON_BATCH, 0, &htok);

if (bOk)

{

STARTUPINFO si = {sizeof(si), 0, L""};

PROCESS_INFORMATION pi;

wchar_t szCmd[MAX_PATH];

lstrcpy(szCmd, pszCommandLine);

bOk = CreateProcessAsUser(htok, 0, szCmd, 0, 0, FALSE,

0, 0, 0, &si, &pi);

if (bOk)

{

CloseHandle(pi.hThread);

CloseHandle(pi.hProcess);

}

}

return bOk ? true : false;

}

The startupinfo initialization code is a simple shortcut that I've gotten used to typing over and over. It simply leverages the fact that the structure size is the first data member, that the lpDesktop parameter is the third, and that I want everything else to be set to 0. Also note that I explicitly make a copy of the command line onto the stack. CreateProcessW and CreateProcessAsUserW both touch the memory pointed to by the command-line parameter and expect it to be writable; this produces an access violation unless you provide a writable pointer (this is why these functions take an lptstr as opposed to an lpctstr for their command-line argument). The "A" versions of these functions already make copies of all string arguments (in the process of converting them to Unicode strings), so you won't run into this little gotcha unless you're making a Unicode build. Watch out.

Here's a sample code snippet that calls this function to start mydaemon.exe in a batch logon session for Alice. Figure 5.3 shows the results; note that the caller is running in the System logon session, and thus has all the privileges required to call LogonUser and CreateProcessAsUser.
_startDaemonAsUser(L"foo", L"alice", L"password", L"mydaemon");

[image: image3.jpg]
Figure 5.3. Leveraging natural window station allocation

All of this is well and good, and since most daemon processes aren't designed to run on behalf of various interactive users and therefore don't look at things such as hkey_current_user or per-user environment variables, CreateProcessAsUser doesn't deal with setting these things up; you have to do this manually if it's really necessary. But how?

The User Profile

The first thing you have to understand is that each principal has the potential to have an associated user profile on any machine where that principal can log in. If you're curious what makes up a user profile, simply peek into the following directory:

Windows 2000: %SYSTEMROOT%\. .\Documents and Settings

Windows NT 4: %SYSTEMROOT%\Profiles

On Windows 2000, some of the most interesting files and folders are hidden, so if you're using Explorer to poke around, you should temporarily enable viewing of system and hidden files (being an administrator helps as well).

Each subdirectory represents a user profile; Winlogon normally creates one of these subdirectories and initializes it when a human logs on to the machine for the very first time (creating the profile can take a while, as you probably know from experience). Directly under each profile's root directory, you'll find a file called ntuser.dat. This is the hkey_users hive for the user; normally, when a thread opens a registry key under hkey_current_users, the hive it is reaching into is determined by the user SID in the thread's security context.

Now run regedt32.exe and look at hkey_users. Note that it is possible to have multiple hives loaded simultaneously under this key. (In fact, it's common practice for administrators to load hives for individual users in order to manually tweak per-user settings.
) Each time Alice logs in via Winlogon, the system loads Alice's hive; when Alice logs out, the system unloads her hive. If Alice's hive were not loaded and a thread running in her security context tried to open a registry key under hkey_current_users, it would be shunted into the hive loaded under hkey_users\ .default, which by default is readable by all authenticated users but only writable by administrators. This is the hive that daemon processes will often see if they go snooping under hkey_current_user, because the COM SCM doesn't bother loading profiles for daemons – it would be a waste of time because daemons don't normally store per-user state via profiles.
 Profiles were designed for interactive users (humans), not daemons (although the system SCM does load profiles for services that run as distinguished principals; go figure).

Note that each user hive loaded under hkey_users is named based on the text form of the user's SID (this is a quick way to see the SID for your account). Drill down into your profile (it's most likely the only one loaded) and look for a subkey called Environment. Here you'll find all your per-user environment variables. Clearly, there's lots of important information in this hive!

If for some reason you need to start a process running in a distinct logon session (perhaps one that you established via LogonUser), and you'd like to ensure that this process has a fully functional environment, you can't simply call CreateProcessAsUser and be done with it. You'll need to load the user's hive. But what if the hive hasn't even been created yet? Well, unlike many developers before you, you're in luck. Windows 2000 documents some new APIs for dealing with user profiles, and these functions are also supported on earlier versions of Windows.

The core profile-related APIs that you'll want to know about are as follows:

typedef struct _PROFILEINFO

{

DWORD dwSize;

DWORD dwFlags;

PTSTR lpUserName;

LPTSTR lpProfilePath;

LPTSTR lpDefaultPath;

LPTSTR ipServerName;

LPTSTR lpPolicyPath;

HANDLE hProfile;

} PROFILEINFO;

BOOL LoadUserProfile(HANDLE Token,
LPPROFILEINFO ProfileInfo);

BOOL UnloadUserProfile(HANDLE Token, HANDLE Profile);

The documentation for these functions is pretty spotty, but I've gotten them to work robustly on Windows 2000, plus virtually all service packs of Windows NT 4, so I feel pretty comfortable recommending them. What else are you going to do if you need to create a profile from scratch?

The first function, LoadUserProfile, loads the hkey_users hive for the specified user. You must provide not only a token for the user, but also the user's name (the reason for this isn't clear, since the user's name can be garnered from the token by calling GetUserName while impersonating). The beauty of this function is that if the user hasn't yet physically logged in to the machine via Winlogon, LoadUserProfile happily constructs a brand-new profile by copying the default profile and then customizing it (changing the DACLs, for instance) for the new user.

Here's some code that loads the user profile, given a token:

bool _loadUserProfile(HANDLE htok, HANDLE& hprof)

{

// impersonate user to get his name

if (!ImpersonateLoggedOnUser(htok)) return false;

wchar_t szUserName[256];

DWORD cch = sizeof(szUserName) / sizeof(*szUserName);

bool bOk = false;

if (GetUserName(szUserName, &cch))

{

RevertToSelf();

PROFILEINFO pi = {sizeof(pi), 0, szUserName};

// Loading profile

bOk = LoadUserProfile(htok, &pi) ? true : false;

if (bOk)

{

// LoadUserProfile return profile handle

// in PROFILEINFO::hProfile

hprof = pi.hProfile;

}

}

else

{

RevertToSelf();

}

return bOk;

}

The handle hprof refers to hkey_current_user for the newly loaded hive. Unloading the profile is straightforward: just call UnloadUserProfile, passing the token and the handle returned from LoadUserProfile.

The header file you'll need to include is userenv.h, and the import library is userenv.lib. These files ship with versions of the Platform SDK that support Windows 2000.

Even after loading the user's profile, you're still not quite finished, however. In order to make the process feel warm and cozy inside its logon session, you'll want to create an appropriate environment block.

Environment Block

Try the following experiment: Bring up a command prompt and type set u. Here's what I get on my Windows 2000 machine:

USERDNSDOMAIN=foo.com

USERDOMAIN=FOO

USERNAME=kbrown

USERPROFILE=C:\Documents and Settings\kbrown

This is clearly customized on a per-principal basis. The problem is that CreateProcessAsUser simply makes a copy of the environment block of the parent process unless you pass something other than NULL for the Environment parameter. Once again, userenv.h comes to the rescue:
BOOL CreateEnvironmentBlock(

LPVOID* Environment,
// out

HANDLE Token,

// in, optional

BOOL Inherit);

// in

BOOL DestroyEnvironmentBlock(LPVOID Environment);

The optional Token argument allows you to create an environment for a particular user, or an environment for a daemon (in which only the system environment variables are used, as opposed to per-user variables). The system allocates memory and drops a pointer to the new environment block wherever you aim the Environment argument; to free this memory, call DestroyEnvironmentBlock.

The trick to using these functions is to make sure that the user's profile is loaded before calling CreateEnvironmentBlock. If you forget this step, the system will end up getting environment variables from hkey_users/.Default, which isn't what you want. You should also note that CreateEnvironmentBlock always returns a Unicode string, so you should pass the create_unicode_environment flag to CreateProcessAsUser to indicate that you are specifying an environment using Unicode characters.

Here's some code that pulls all this together, loading a user profile, creating an appropriate environment block, and launching a new process:
bool _runAsUser(

const wchar_t* pszAuthority,

const wchar_t* pszPrincipal,

const wchar_t* pszPassword,

const wchar_t* pszCommandLine)
{

HANDLE htok;

BOOL bOk = LogonUser(pszPrincipal, pszAuthority, pszPassword,

LOGON32_LOGON_BATCH, 0, &htok);

if (bOk)

{

HANDLE hprof = 0;

bOk = __loadUserProfile(htok, &hprof);

}

void* pEnv = 0;

if (bOk)

{

bOk = CreateEnvironmentBlock(&pEnv, htok, FALSE);

if (!bOk) pEnv = 0;

}

if (bOk)

{

STARTUPINFO si = {sizeof(si), 0, L""};

PROCESS_INFORMATION pi;

wchar_t szCmd[MAX_PATH];

lstrcpy(szCmd, pszCommandLine);

bOk = CreateProcessAsUser(htok, 0, szCmd, 0, 0, FALSE,

CREATE_UNICODE_ENVIRONMENT, pEnv, 0, &si, &pi);

if (bOk)

{

CloseHandle(pi.hThread);

CloseHandle(pi.hProcess);

}

}

if (pEnv) DestroyEnvironmentBlock(pEnv);

return bOk ? true : false;
}

There is a glaring problem with this code. Who unloads the user profile after it's been loaded? It won't be safe to unload the profile at least until the launched process exits, but that means the code would need to keep a thread alive waiting for this to happen. Windows 2000 introduced a solution to this problem: it's called the RunAs service, and it solves lots of headaches by acting as a built-in logon session broker.

The Windows 2000 RunAs Service

The RunAs service is a daemon that runs in the System logon session; therefore, it is allowed to call LogonUser and CreateProcessAsUser at will. It normally runs all the time; it autostarts at boot time by default, and won't accept a stop request until all processes it's managing have exited. You can access this service programmatically by calling a function that was also introduced in Windows 2000:

BOOL CreateProcessWithLogonW(

LPCWSTR lpUsername,

// in

LPCWSTR lpDomain,

// in

LPCWSTR lpPassword,

// in

DWORD dwLogonFlags,

// in

LPCWSTR lpApplicationName,

// in, optional

LPWSTR lpCommandLine,

// in, optional

DWORD dwCreationFlags,

// in

LPVOID lpEnvironment,

// in, optional

LPCWSTR lpCurrentDirectory,

// in, optional

LPSTARTUPINFOW lpStartupInfo,

// in

LPPROCESS_INFORMATION lpProcessInfo);
// out

Note that you lose some of the flexibility of CreateProcess when you call this function. You can not longer specify security attributes for the process and thread (this isn't such a bad thing; the system uses the default security settings from the target user's token). You also cannot use this function to pass inheritable handles to the target process. The reason is that you are asking another process (the RunAs daemon) to create the process on your behalf, rather than creating the process directly.
 The other parameters are the same (except, of course, that you can specify a set of alternate credentials).

The parameter dwLogonFlags allows you to use the RunAs service in three different ways. By passing 0 for this parameter (as of this writing, it's not clear from the documentation whether this is supported, but it works, so I'll mention it), the system simply starts the process in a new interactive logon session without loading the user's profile. This works for most generic daemon processes because they generally should not rely on user profiles. If you want the RunAs daemon to load the profile and set up the environment (just like the example code earlier), pass logon_with_profile for this parameter. The RunAs daemon places each new process it creates into a job, and monitors that job (via a completion port) to track when the process and any child or grandchild processes have shut down; only then does it unload the profile.

There is one other value you can pass for dwLogonFlags, logon_netcredentials_only. This flag causes the RunAs daemon to specify the logon32_logon_new_credentials flag in its call to LogonUser (discussed in Chapter 4) so that the new process runs with the caller's token, but has the network credentials that were specified via the first three parameters to CreateProcessWithLogonW.

One thing you should be aware of is that the RunAs service was designed to be used by the interactive user as well as daemon processes. In fact, in case you haven't already discovered this, on Windows 2000, use the Start menu (or any Explorer window) to find an application you'd like to start. Instead of left-clicking to activate the program, right-click while holding down the Shift key. You should get a popup menu (as you'd expect), but because you held the Shift key down, you'll see an extra entry: "Run as...". Select this entry, type in the authority/principal/password tuple, and Explorer will happily call CreateProcessWithLogonW on your behalf.

Although this UI feature is pretty convenient, the reason I'm going down this path is to point out an interesting undocumented feature that kicks in when you invoke this function from the interactive logon session (specifically, the one started via Winlogon) as opposed to a daemon logon session. In the former case, the job created by the RunAs daemon has a lifetime limited to that of the interactive logon session; when the interactive user logs out, the RunAs daemon shuts down any processes started by that user (even though they are in separate logon sessions). This feature was added to satisfy the principal of least surprise (most end users are accustomed to having all processes they've launched from the shell shut down when they log off). When calling CreateProcessWithLogonW from a logon session not created by Winlogon (for instance, a daemon logon session or an interactive logon session created by manually calling LogonUser), the process's lifetime isn't limited in this fashion.

Summary

· A window station is an encapsulated USER environment that is normally created on an as-needed basis to host processes. Window stations are naturally allocated by the system on a per-logon session basis.

· Each process is always associated with a single window station, although processes may migrate between window stations.

· By placing a DACL on a window station and making all USER handles relative to that window station, Windows avoids the overhead of having DACLs on every single USER object.

· The interactive window station, Winsta0, is the only place where windows are visible and can receive device input. This window station is the most heavily guarded in the operating system.

· Beware of the assert macro in noninteractive (daemon) window stations.

· Each window station can have several desktops, although this is only really interesting in Winsta0.

· Each thread is always associated with a single desktop.

· Each desktop also has a DACL that gives highly secure processes such as Winlogon more control over the Windows user interface.

· Be aware of inheritable ACLs in the DACL for Winsta0, in case you feel the need to modify it.

· A job can provide many of the same protections as a window station, and can be used within or across window station boundaries.

· Avoid relying on per-user state stored in profiles when writing daemons. Profiles are designed for humans, not daemons. Creating and loading profiles is not cheap.

· If you'd like to run an interactive process under alternate credentials, either use the Windows 2000 RunAs daemon or be prepared to write a lot of code to deal with loading profiles and modifying window station DACLs.
� Because each process implicitly opens handles to its window station and desktop early during process initialization (these are the handles returned from GetProcessWindowStation and GetThreadDesktop), figuring out which handles are used to grant or deny access during the process's lifetime can be tricky. If a thread in Bob's process suddenly starts impersonating Alice and then creates a menu, will the system attempt to open a new handle to the desktop or simply use the handle acquired earlier on Bob's behalf? Because this behavior is not documented and could therefore potentially change from service pack to service pack, I simply mention this as a caveat to those who would try to use a finer-grained model of window station security, especially in concert with impersonation.

� Because the documentation is so vague, you should take these details with a grain of salt, since they could potentially change across service packs. My goal here is to give you a feel for how these permissions affect your programs. I find it especially interesting that some permissions consider the thread token (if present), whereas others ignore it completely.

� In other words, if the calling thread happens to be impersonating, the impersonation token is ignored and the process token is used to determine whether or not to grant the request.

� In other words, the impersonation token (if any) is tested for access permissions. If no thread token exists (that is, the thread isn't currently impersonating), the process token is used as you'd expect.

� Thanks to a friend at Microsoft for this tidbit, which wasn't documented in MSDN at the time of this writing.

� Perhaps this was an attempt to help distinguish the Windows operating system from UNIX: Service sounds so much more light and happy than Daemon. In any case, the "Service" naming convention is somewhat misleading, because not just services run in noninteractive window stations (COM servers are the classic example of nonservice processes that often run in noninter�active window stations).

� As this manuscript was being prepared to be sent to the publisher, Windows 2000 had been released for a little over a month. In this very first release, an attack similar to the one just described actually works because there is a bug In the enforcement of window station security as new processes are created. I discovered this bug while doing some final research on the newly released operating system and informed Microsoft; as a result they plan to release a hotfix for the problem (the fix should be included in the first service pack for Windows 2000). If you're interested in learning more about this vulnerability, go to the archives of � HYPERLINK "http://www.ntbugtraq.com" ��www.ntbugtraq.com� and search for "Potential bug in window station/desktop security."

� For servers running Terminal Services, there will be one of these window stations per session, but within any given session, all the names, mechanisms, and rules discussed in this chapter still apply.

� winlogon.exe creates Winsta0 when it initializes.

� Technically, this is bundled in a single process with several other services, and the entire bun�dle has opted to run in Winsta0.

� This doesn't mean your process temporarily attaches to Winsta0; rather, the Win32 subsystem (csrss.exe) running in the System logon session (and Winsta0) does this on your behalf. One other tidbit you should be aware of is that calls to MessageBox using this flag are queued by CSRSS.EXE; thus, only one of these message boxes will ever be active at any given time on a par�ticular machine.

� If you can't figure out how to apply this technique to your own compiler's implementation, con�sider hacking up your own custom assert macro that uses mb_service_notification.

� The difference is that if you call CreateMutex, CreateFile, and so on, GetLastError will inform you if the named object already exists (the error code is error_already_exists). Unfortunately, as of this writing, CreateWindowStation doesn't follow this rule.

� SetHandleInformation allows you to protect handles in this fashion. In fact, you can unprotect your process's window station and desktop handles by calling SetHandleInformation; by calling CloseHandle, you can force them closed (this isn't a terribly good idea unless you've already switched to another window station or desktop). Using Mark Russinovich's cool Handleex tool (www.sysinternals.com), I verified this and also discovered that the process actually caches two handles to its window station during initialization; therefore, it's not practical to detach a process from its original window station entirely without shutting that process down (there's no documented way of reading or writing this second handle).

� I don't see why GetProcessWindowStation doesn't simply duplicate the handle so that you can safely close it via CloseHandle when you're done, just like you do with any other handle. It's odd.

� I found it interesting that although the MSDN documentation for this function seems to imply that it will only work from Winsta0, I've called it successfully from noninteractive window stations, even when running in a logon session for a normal (non-TCB, nonadministrative) principal. This seems to me to be a bug in the implementation, because it appears to violate the protection and privacy that Winsta0 affords the interactive user.

� On Windows NT, this is always the case. On Windows 2000, screen savers normally run on the Default desktop unless they are password protected, in which case they run on this special desktop.

� I ran a process under my own interactive logon session (which of course has this permission), and then impersonated a user who had no permissions to my desktop whatsoever. While imper�sonating, I was able to call FindWindow and SendMessage to find and close another applica�tion on my desktop. This tells me one of two things: Either impersonation tokens are ignored by this permission, or the permission controls access to objects other than window handles.

� In fact, nothing stops you from creating jobs that include processes in different window stations.

� See Brown (2000b) for more details on building logon session brokers.

� Technically, you don't need this latter privilege if all you are doing is making a restricted token from your own token and creating a process with restricted authorization attributes.

� If you've never tried this before, from REGEDT32, highlight hkey_users and choose the menu item Registry:Load Hive, and go find a copy of NTUSER.DAT that you'd like to peek at. (You'll need to be a member of the Administrators alias to look at other users' hives.)

� I can't tell you how many times I've heard people complain about this on the DCOM listserver (� HYPERLINK "http://discuss.microsoft.com" ��http://discuss.microsoft.com�): "Why doesn't my COM server have the correct environment?" The answer is to not rely on per-user-profile information.

� The story behind this is rather interesting. After publishing Brown (2000b) (which documented the fact that these functions appeared to be fully operational on Windows NT 4), I noticed that (quite by coincidence, I'm sure) a brand-new Knowledge Base (KB) article had been published, and that the editors at Microsoft Systems Journal had updated my article to refer to this KB arti�cle as if I had simply overlooked it (I hate that!). This Knowledge Base article basically confirms that these functions are in fact supported on Windows NT 4.

� Technically, since the RunAs service is really part of the operating system, I'd imagine that it would have been possible (given internal knowledge of the way handles work) to pass through inherited handles to the child process.

� According to my experiments, the child processes are confined to the job. I verified this by call�ing CreateProcess specifying the create_breakaway_from_job flag from a process spawned by the RunAs daemon, which failed with error_access_denied. This means that if you start a process by calling CreateProcessWithLogonW, you won't be able to assign it to a job of your own.

� There is also a runas.exe utility that you can use from the command line. Type runas at a Windows 2000 command prompt to get a list of options.

�Что бы это значило

PAGE
29

