Chapter 6 - Access Control and Accountability

Of the three access control strategies described in Chapter 3, object-centric access Control is the most flexible, and correspondingly the most daunting option. Since I've already discussed the simplicity of the impersonation model in Chapters 3 and 4, and since I'll cover COM+ role-centric access control in Chapter 9, this chapter is dedicated to object-centric access control, the traditional form of access control provided by the Windows kernel.


I left this chapter until the very end of the Mechanics section for a reason. Before I started my journey into the world of security, I believed (like a lot of Windows developers) that security was all about calling AddAce and friends, and that it wasn't terribly glamorous. However, what I found was that access control (ACL maintenance and the like) was really just one part of a more interesting picture. Authentication is where security becomes interesting (in my opinion), whereas access control is pretty much just bookkeeping; as a security programmer, fortunately you get to do both.


This chapter is all about bookkeeping: how to keep your DACLs ordered correctly (this is a bit trickier in Windows 2000 than it used to be), how ACL inheritance really works and how to use it correctly, and so forth. I didn't think I'd enjoy writing this chapter, but it turned out to be a lot of fun, given all the cool new stuff that Windows 2000 brought to the table, and I think you'll enjoy this chapter as well.

Permissions

What do OpenProcess, OpenService, RegOpenKeyEx, and OpenWindow station all have in common? Each of these functions requires you to specify your intentions before it will issue a handle. Your intentions take the form of a bitmask (32 bits wide), with each bit representing a particular permission that you desire. This is a very simple mechanism, and it makes it tremendously easy to program, but how is it possible to scrunch all the possible permissions for all possible classes of objects into a namespace that has only 32 slots?


Well, a couple of solutions come to mind. The first and simplest solution is to give each class of object its own namespace. When you call OpenProcess, you'll specify the permissions that make sense for a process. When you call OpenService, you'll specify permissions that make sense for a service. In fact, the header files in Windows provide manifest constants for these various permissions; for instance, here are the first two permissions defined for the types of objects mentioned earlier:
// from winnt.h

#define PROCESS_TERMINATE         (0x0001)

#define PROCESS_CREATE_THREAD     (0x0002)

// from winsvc.h

#define SERVICE_QUERY_CONFIG       0x0001

#define SERVICE_CHANGE_CONFIG      0x0002

// from winnt.h

#define KEY_QUERY_VALUE
          (0x0001)

#define KEY_SET_VALUE
          (0x0002)

// from winuser.h

#define WINSTA_ENUMDESKTOPS       0x0001L

#define WINSTA_READATTRIBUTES     0x0002L
Specific Permissions
What you are looking at in the list just given are known as specific permissions; they really only make sense when applied to a known class of object. For instance, no developer would ever try to open a registry key for process_terminate permission – this wouldn't have any meaning – so, assuming we always work with distinct classes of objects, there is no problem sharing a common physical namespace and having every class of object use the same set of bits (assigning local semantics to each bit), as shown earlier. Note that each permission is defined as a 16-bit mask; this is because the 32-bit mask representing access permissions is actually split into four parts, with 16 bits reserved for specific permissions (Figure 6.1).
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Figure 6.1   Anatomy of the access mask
Standard Permissions

There are several permissions that virtually all objects have in common, especially when it comes to access control and auditing. It would be silly to have each object define its own permission for delete, for instance: file_delete, key_delete, service_delete, and so on. So instead, everyone simply agrees that there is a standard permission called delete (with a common physical bitmask), and we get on with it.


Recognizing the need for permissions that were polymorphic across all different classes of objects, 8 of the 32 bits were carved out and called standard permissions, and 5 of them are in use today (3 are presumably reserved for future use):

// from winnt.h

#define DELETE
      (0x000l0000L)

#define READ_CONTROL
(0x00020000L)

#define WRITE_DAC
      (0x00040000L)

#define WRITE_OWNER
(0x00080000L)

#define SYNCHRONIZE
(0x00l00000L)

Besides delete, which is obvious, the standard permissions and what they control are as follows:
READ_CONTROL Read access to the owner, group, and DACL

WRITE_DAC    Write access to the DACL

WRITE_OWNER
 Write access to the owner SID

SYNCHRONIZE
 Ability to wait on the handle


Although I'll describe these bits later, I should mention up front that the "miscellaneous" bit positions in the access mask are used in a way that may seem a bit strange. For example, the two bits that are currently defined,

// from winnt.h

#define ACCESS_SYSTEM_SECURITY (0x0l000000L)

#define MAXIMUM_ALLOWED        (0x02000000L)
will never be found in a DACL. The other two miscellaneous bits are reserved for future use.


Having a set of standard permissions is a really good thing because it allows us to treat objects polymorphically, which is important in a couple of scenarios having to do with the creation of new objects. Being able to assign permissions polymorphically enables a basic form of ACL inheritance, but more important, it enables us to have a single default DACL that can apply to all objects – or does it? What about specific permissions? How does the system allow you to assign specific permissions in a polymorphic way?

Generic Permissions

The most significant four bits in the mask provide a reasonable and simple solution to the problem. Using the universal hammer of computer science, the Windows security team added a level of indirection that allows you to choose an access mask (some combination of standard and specific permissions) in a polymorphic way. There are four generic permissions that can be used to accomplish this:

#define GENERIC_READ
(0x80000000L)

#define GENERIC_WRITE
(0x40000000L)

#define GENERIC_EXECUTE
(0x20000000L)

#define GENERIC_ALL
(0xl0000000L)

Each class of object internally has a mapping of the four generic permissions onto real permissions (standard and specific), which is represented by the generic_mapping data structure:
typedef struct _GENERIC_MAPPING   
{


ACCESS_MASK GenericRead;


ACCESS_MASK GenericWrite;


ACCESS_MASK GenericExecute;


ACCESS_MASK GenericAll;
} GENERIC_MAPPING;

Thus, generic_read will map onto files and registry keys in different ways, but it's pretty predictable. generic_read for a file includes the following bits that logically grant all possible read permissions:
READ_CONTROL

SYNCHRONIZE


FILE_READ_DATA

FILE_READ_ATTRIBUTES

FILE_READ_EA
generic_read for a registry key includes the following bits that grant all possible read permissions:
READ_CONTROL

KEY_QUERY_VALUE 
KEY_ENUMERATE_SUB_KEYS 
KEY_NOTIFY

As will be shown later, you can make generic_read (and friends) mean whatever you like for your own private objects as well.

Anatomy of a Security Descriptor

A security descriptor does just that – it describes the security settings for an object. Security descriptors are associated with all intrinsically secured objects provided by Windows. Executive objects such as processes, threads, semaphores, sections, waitable timers, and window stations, as well as other objects such as files (NTFS), registry keys, and services, are all examples of objects whose security is enforced intrinsically by the operating system; thus, each of these objects has an associated security descriptor.


As shown in Figure 6.2, each security descriptor contains a revision number and control word, plus four pointers (or offsets, depending on the flavor) to the variable-length guts of the descriptor: the owner SID, primary group SID, DACL, and SACL. These settings are squashed into a semi-opaque data structure (security_descriptor) that is usually stored as a contiguous variable-length blob of bits alongside the object with which it is associated.
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Figure 6.2   Anatomy of a security descriptor


There is no central store of security descriptors in Windows; rather, each subsystem that exposes secure objects must manage security descriptors individually (fortunately, the good folks at Microsoft have already implemented most of the secure subsystems that you care about). For instance, the NTFS file system manages security descriptors for files and directories, and the System Service Control Manager manages security descriptors for service objects. The latter you can actually see – just poke around in the service database at HKLM\SYSTEM\CurrentControiSet\Services and look for a subkey called Security under each user-mode service. You'll never read or modify this value directly, but this is where the System SCM stores the security descriptor for a service.

The Owner

Each security descriptor has a SID that indicates the owner of the object; this may be an individual principal, but it also may be a group or alias. In fact, when an administrator of a domain creates new objects, either the Administrators alias or the Domain Admins group is assigned as the owner, depending on the type of object being created.


Ownership implies the most basic permissions on an object: read_control and write_dac. The owner is always granted the permission to read and change the DACL, so that even if she accidentally denies all access to everyone (including herself), she will have the implicit permission to fix the problem.


If Alice is the owner of an object (a file, for example), she can delegate the authority to manage the security on that file to Bob by granting Bob write_dac permissions. Bob can now change the DACL in any way he likes. In fact, because Bob is not the owner of the object, Bob can accidentally lock himself out by denying himself permission to access the file. But because Alice is the owner, he can't accidentally (or maliciously) lock her out of the file.


From a completely practical perspective, what this means is that if you are trying to get access to an object, you will always be able to open the object for at least read_control and write_dac permission if the object's owner SID is present in your token, regardless of the state of the object's DACL. But what if you're not the owner?


Imagine that Alice created lots of files (some very large) on your file server and was subsequently abducted by aliens. If Alice was an administrator of the file server, those files would naturally be owned by the Administrators alias, and therefore you (being an administrator) could easily grant yourself delete permissions and clean them up. However, let's say that Alice is just a normal user, not an administrator of the file server. In this case, Alice (as an individual) will be the owner of each file, so unless Alice had set up the DACLs to grant you some permissions, you'll be completely locked out of these files.


Windows provides a solution for this via SeTakeOwnershipPrivilege (apparently some Microsoft employees were in fact abducted by aliens, making the problem apparent). If you enable this privilege in your token, you can open virtually any object
 in the system for write_owner permission. With write_owner, you can change the owner SID to one of the SIDs in your token. (Technically this is limited to either your user SID or any group/alias that is marked as having the potential for being an owner, the Administrators alias being the canonical alternative.) Once the owner has been changed to one of the SIDs in your token, you can now reopen the handle for read_control and write_dac permissions and change the DACL to grant yourself delete permission. You can then open yet a third handle to the object asking for delete permission and delete the object (in this case you'd just call DeleteFile).


SeTakeOwnershipPrivilege is granted to the Administrators alias by default. Note that this privilege does not confer the right to give ownership back. This makes it harder for an administrator to casually take ownership of a file (owned by Alice, say), silently modify the DACL, and then give ownership back to Alice without her knowledge.

The Primary Group


The primary group SID is present in each security descriptor for compatibility with the POSIX subsystem. Because this is not a terribly popular subsystem, I won't be spending much time talking about this setting (it has virtually no meaning at all in the Win32 subsystem).


Any developer who has worked on a vanilla UNIX platform is familiar with the simple access control model present there. Each file has a matrix of nine attributes, grouped into three sets of read, write, and execute permissions. The first set applies to the owner of the file, the second applies to the group associated with the file, and the third applies to everyone else (world). For instance, the following set of permission attributes, rwxr-xr--, grants the owner full control, the group read and execute access, and everyone else read access. The UNIX utility chmod is used to adjust these settings.


It's clear based on the way security in UNIX works that each object needs to provide storage for an owner SID and a group SID, and although the owner has very well-defined semantics in the Win32 subsystem, the group SID effectively languishes as a historical footnote.

The DACL
DACL stands for discretionary access control list, and based on the previous discussion of ownership, it may already be clear what is implied by discretionary. The access control policy for any given object is specified at the owner's discretion (the owner of an object is implicitly granted read_control and write_dac permissions to that object). This is very different from the mandatory access controls used in military systems.


Conceptually, the DACL is simply a list of principals, groups, and aliases that are allowed to touch an object in certain ways.

The SACL
SACL stands for System access control list, and unlike the DACL, the SACL is nondiscretionary; it has no relationship whatsoever to the owner of the object. So far the only use Windows has found for the SACL is for audits and alarms, and as of this writing, alarms are not supported (even on Windows 2000).


The audit entries in the SACL provide a list of principals, groups, and aliases that are to be audited when attempting to touch an object in certain ways. I'll drill down into both the DACL and SACL a bit later in this chapter.

The Control Word

The control word group of bitflags houses several different configuration options, most of which are simply used to communicate extra semantic information between you and the system when getting or setting security information on an object (although some of these settings are also directly maintained as part of the state of the security descriptor of an object). These flags are covered in this chapter as appropriate.
Where Do Security Descriptors Come From?
Let's take a very simple example, the lowly mutex:

HANDLE CreateMutex(


LPSECURITY_ATTRIBUTES MutexAttrs,
// in, optional


BOOL InitialOwner,


// in


LPCTSTR Name);



// in, optional

When giving talks on Windows security, I often jokingly ask the crowd the following question: "Who in this room has ever passed anything other than NULL?" Most people in the room snicker, while a few proud souls raise their hands in earnest. Most Windows developers are trained from birth to pass NULL whenever they see the dreaded lpsecurity_attributes parameter, so let's quickly dispel the fear behind it.

struct SECURITY_ATTRIBUTES 
{

DWORD nLength;

// sizeof SECURITY_ATTRIBUTES

LPVOID psd;


// optional pointer to SD


BOOL blnheritHandle;
// is handle inheritable?

};

By passing an explicit security descriptor wrapped in a security_attributes structure, you can inject custom security settings for the new mutex. If you provide a fully formed security descriptor, complete with owner, group, DACL, and SACL, you'll have complete control over the security settings for the mutex. However, the code you'd have to write to make this work would be somewhat drawn out, and generally speaking, the more custom security-related code you write, the more chances you have for accidentally opening up a security hole in your application. Instead of providing all the settings (assuming you don't just pass NULL), nine times out of ten you'll only provide the DACL. Any elements of the security descriptor that you don't provide will be supplied by the system. The system scrapes the owner and group SIDs from the default owner and group SIDs in your token, and then constructs a default SACL based on the parent object's SACL. (In the case of a mutex, there is no parent, so there is no SACL by default.) If you don't specify a DACL, the system constructs one by looking at the parent object or, as in the case with a mutex where there is no parent
, by applying the default DACL in your token to the class of object being created. (A token has a DACL with generic permissions; these generic permissions are mapped to specific and standard permissions to produce a meaningful DACL for the specific class of object you are creating.)

How to Pass NULL and Lead a Happy Life

As mentioned earlier, the less security-related code you write, the less chances there are for you to accidentally goof up and leave a gaping security hole in your application. By passing NULL for lpsecurity_attributes (or passing NULL for the security descriptor pointer contained inside), you are applying a consistent policy for security on all the objects that you create. The system will simply look into your token if it needs help with missing elements when creating security descriptors for new objects. The trick is knowing how to create a default DACL that reflects the overall policy you'd like to apply to objects.


Although this is not documented anywhere (and could potentially change), here's what the default DACL looks like in a token for a logon session on my system (it looks the same on both my Windows 2000 and Windows NT 4.0 machines, by the way):

grant 0x10000000 to Administrators 
grant 0x10000000 to SYSTEM

I'm an administrator, so I've also included the default DACL for a sample principal named Alice (who is not an administrator):

grant 0x10000000 to Alice 
grant 0x10000000 to SYSTEM

The access mask being granted in each of these cases is generic_all. When an administrator creates new objects and this default DACL is applied, those objects are usable by any other local administrator, which makes it easier to share administration duties. When a random user (not an administrator) creates new objects, they are usable by that particular user. No matter what, the System logon session has access permissions by default.
 Note the use of generic permissions; the system maps these automatically based on the class of object being created.


For example, if Alice created a named mutex (passing NULL for lpsecurity_attributes) while she was running in a security context with a default DACL as shown previously, the resulting mutex would have the following DACL:

grant 0x001F0001 to Alice 
grant 0x001F0001 to SYSTEM

Note how the generic permissions were mapped automatically based on the class of object (mutex in this case) that Alice created. In this case, the high word (0x001F) represents all standard permissions (including synchronize), and the low word 0x0001) represents all specific permissions for a mutex (mutant_query_state) .


If you want to change this default behavior for your process, at process initialization time create a custom DACL (be sure to stick with generic permissions because this DACL will likely be used to create lots of different types of objects). Poke this DACL into your process token by calling SetTokenInformation (see Chapter 4), and pass NULL to your heart's content.
Security Descriptor Usage Patterns

Because each piece of information stored in a security descriptor is variable length (SIDs and ACLs), for convenience security descriptors come in two flavors: self-relative (serialized) and absolute. All this means is that when you have a pointer to a security descriptor, your pointer may simply reference a contiguous block of memory that contains all the information in the descriptor (this is the self-relative flavor), or it may point to a fixed-length data structure that holds four pointers, one to each element of the descriptor, each of which could potentially be in a separately allocated block of memory (this is the absolute flavor). Generally the security descriptors that you provide to the system programmatically tend to be in absolute format, and the security descriptors that you retrieve from the system are self-relative, as demonstrated in the following code fragments:

// here we use a SECURITY_DESCRIPTOR to communicate
// security information *to* the system
SECURITY_DESCRIPTOR sd; // absolute SD

InitializeSecurityDescriptor(&sd, SECURITY_DESCRIPTOR_REVISION);

SetSecurityDescriptorOwner(&sd, g_pOwner, FALSE); 
SetSecurityDescriptorDacl(&sd, TRUE, g_pDacl, FALSE);
SECURITY_ATTRIBUTES sa = {sizeof(sa), &sd, FALSE}; 
HANDLE hMutex = CreateMutex(&sa, FALSE, L"MyMutex");
//   .. .

CloseHandle(hMutex);

// 
// here we use a SECURITY_DESCRIPTOR to retrieve 
// security information *from* the system 
void* psd = 0;  // self-relative SD 
if (GetNamedSecurityInfo(L"c:\\foo.txt" ,



SE_FILE_OBJECT, OWNER_SECURITY_INFORMATION,



0, 0, 0, 0, &psd))    
{


//do something with the information...



LocalFree(psd); // one call frees the SD 
}

Self-relative security descriptors are easy to free (as the previous code demonstrates); they are also easy to drop into persistent storage (for instance, as values in registry keys for securing services), but they are very difficult to modify in place. When you need to construct (or modify) a security descriptor on the fly, you'll usually prefer the absolute form because it's more convenient. The system provides a set of accessor functions for retrieving the contents of a security descriptor, so it really doesn't matter (in most cases
) what form you present to the system. Here are two of the prototypical accessors:

BOOL GetSecurityDescriptorOwner{


PSECURITY_DESCRIPTOR psd, 
// in

PSID* pOwner,


// out


PBOOL OwnerDefaulted);

// out
BOOL GetSecurityDescriptorDacl(


PSECURITY_DESCRIPTOR psd,
// in

LPBOOL DaclPresent,        
// out

PACL* pDacl,


// out


LPBOOL DaclDefaulted);

// out

When retrieving information from a security descriptor associated with an object in the system (for instance, a file, a registry key, a thread, or even a custom object under your control), the boolean flags in these APIs should generally be ignored (in fact, having them present in the functions just given is rarely useful, and typically leads to confusion). When building a security descriptor for an object, these flags are very useful indeed, because they convey extra (sometimes subtle) semantics for the operation. How these flags are used is discussed later in the chapter.


There are eight functions overall for getting and setting the four parts of a security descriptor, and they are very straightforward to use:
Get/SetSecurityDescriptorOwner 
Get/SetSecurityDescriptorGroup

Get/SetSecurityDescriptorDacl 
Get/SetSecurityDescriptorSacl


A self-relative security descriptor contains offsets as opposed to pointers to its elements, so avoid relying on the security_descriptor structure definition in winnt.h and instead treat security descriptors as opaque and use the programmatic API (described earlier) for accessing the contents of any security descriptor. This way your code won't break when it is handed an unexpected flavor of descriptor. The psecurity_descriptor typedef, for instance, simply evaluates to void* (thus the use of void* for brevity in the code snippet given earlier).


Note that in the code snippet, I created a security descriptor that was only partially filled. The call to InitializeSecurityDescriptor simply set the revision number, initialized the owner and group to NULL (indicating that they are not specified), and reset the flags in the descriptor to indicate that the DACL and SACL were not specified. I then explicitly attached an owner SID and DACL that I had previously constructed (you'll have to use your imagination here) to the security descriptor before calling CreateMutex. Recall that this doesn't mean that the resulting mutex will have no primary group or SACL in its security descriptor. The other elements will be provided automatically by the system, as explained earlier.


The point that I'm trying to make here is that the security_descriptor structure is generally used as a communication vehicle for transporting security information about an object between you and the system, and nine times out of ten, it will not contain all four elements. To reinforce this, note the second example, in which I called GetNamedSecurityInfo to retrieve a security descriptor from a file. In this case, I only asked for the owner SID, so the resulting security descriptor will only contain this single element. If I were to call GetSecurityDescriptorDacl, the function would indicate (via the DaclPresent flag) that no information about the object's DACL is present in the descriptor. If I were to call GetSecurityDescriptorGroup, the function would indicate (by returning a null pointer) that the primary group is not present. This doesn't mean that the file doesn't have a DACL or group; it just means that I didn't ask for that information.


Occasionally at runtime it's useful to discover whether a particular security descriptor is self-relative as opposed to absolute. To do this, call GetSecurityDescriptorControl and check for the se_self_relative flag:

BOOL GetSecurityDescriptorControl(


PSECURITY_DESCRIPTOR SecurityDescriptor,
// in


PSECURITY_DESCRIPTOR_CONTROL Control,
// out


LPDWORD Revision);



// out

Here's a helper function that I've often found useful:

bool _isSelfRelativeSD(void* psd) 
{


// SECURITY_DESCRIPTOR_CONTROL == WORD


SECURITY_DESCRIPTOR_CONTROL control;


DWORD rev;


if (!GetSecurityDescriptorControl(psd, &control, &rev))



throw "whoops, you passed a malformed SD"; 

return (control & SE_SELF_RELATIVE) ? true : false;

}

How ACLs Work

Access control lists are flexible but complex beasts, and even more so in Windows 2000 – and dramatically so in the Active Directory. This section starts by looking at the basics of how ACLs work, and then discusses the model of ACL inheritance used in Windows NT 4 and the new model introduced in Windows 2000. It also includes a primer on ACL programming for those just getting started.

How the DACL Works

The DACL is the heart of any security descriptor. It consists of a list of access control entries (ACEs) that say who is allowed to touch an object in various ways. Think of it as a set of records with the following columns: ACE type (positive or negative), who, and what (Figure 6.3).
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Figure 6.3   Simplified view of a DACL

The first column in an ACE determines whether the ACE adds or subtracts permissions. The second column indicates the target trustee, and is physically represented by a SID. The trustee can be either an individual principal or (more commonly) an alias or group SID. The third column is a fixed-width bitmask (32 bits wide) that specifies the set of permissions in question (any combination of generic, standard, or specific permissions).


Here's a set of rules that will help you understand the semantics of a DACL:

1. Positive entries in the DACL add permissions; negative entries subtract permissions.


2. Whenever there is a conflict between a positive and negative ACE, the negative ACE always prevails. Thus, if you are explicitly denied access via a negative ACE, you cannot counteract this by adding an opposing positive ACE. There is a very specific exception to this rule that has to do with ACL inheritance in Windows 2000, but I'll defer discussing this until later in the chapter.

3. Unless you are explicitly granted a permission (directly via your user SID or indirectly via a group or alias), you are implicitly denied. Thus an empty DACL doesn't grant anyone any permissions at all.

4. If no DACL at all is provided for an object (not even an empty one), everyone is granted all access. This degenerate case is often referred to as having a NULL DACL.

Assuming Alice is a member of the Friends group, the example in Figure 6.3 can be read as follows: "All Friends except Alice are granted read permissions." Note that because negative entries always prevail over positive entries, it wouldn't make much sense to reverse the sense of the ACEs in Figure 6.3 to try to achieve the following: "All Friends are denied read access, except Alice-she's OK." If Alice is a member of the Friends group, she will be denied.

Negative entries are designed to surgically deny access to small groups or individuals.

Empty DACLs versus NULL DACLs

One of the degenerate cases mentioned earlier is a DACL with no entries at all. DACLs work on an additive basis, so if none of the SIDs in your token is listed in a DACL, that DACL implicitly denies you all access. (There are exceptions to this rule; for instance, recall that the owner of the object still has read_control and write_dac implicitly, regardless of the state of the DACL.) Here is a code fragment that creates a mutex
 with an empty DACL:

// construct an empty DACL

ACL acl;

InitializeAcl(&acl, sizeof(acl), ACL_REVISION);
// here we use a SECURITY_DESCRIPTOR to communicate the DACL to the system 
SECURITY_DESCRIPTOR sd; 
InitializeSecurityDescriptor(&sd, SECURITY_DESCRIPTOR_REVISION); 
SetSecurityDescriptorDacl(&sd, TRUE, &acl, FALSE);
SECURITY_ATTRIBUTES sa = {sizeof(sa), &sd, FALSE}; 
HANDLE hMutex = CreateMutex(&sa, FALSE, L"MyMutex"); 
// . . . 
CloseHandle(hMutex);

Although it may seem strange to create an object whose DACL denies everyone all access, I present this code to demonstrate the difference between an empty DACL and a NULL DACL. (Incidentally, this turns out to be rather useful when used in conjunction with the DuplicateHandle API, as discussed later in the chapter.)


The other interesting degenerate case is the NULL DACL. A security descriptor can be given a NULL DACL explicitly, which indicates that the owner (or someone else with write_dac permission) simply doesn't care about access control on this object, and therefore the security descriptor for the object doesn't need a DACL at all. Having no DACL at all is very different from having a DACL that happens to be empty. An object with a NULL DACL is effectively the same as an object with a DACL that grants everyone all access; it's just more efficient in this case to leave the DACL out altogether.


Here's a code fragment that demonstrates creating a mutex with a NULL DACL:

// here we use a SECURITY_DESCRIPTOR to communicate 
// that we don't want *any DACL at all* 
SECURITY_DESCRIPTOR sd; 
InitializeSecurityDescriptor(&sd, SECURITY_DESCRIPTOR_REVISION); 
SetSecurityDescriptorDacl(&sd, TRUE, 0, FALSE);

SECURITY_ATTRIBUTES sa = {sizeof(sa), &sd, FALSE}; 
HANDLE hMutex = CreateMutex(&sa, FALSE, L"MyMutex");
// ... 
CloseHandle(hMutex};

The key distinction here is in the second and third parameters to SetSecurityDescriptorDacl, which say there is a DACL, and the DACL pointer should be NULL. If you set a NULL DACL on a file or registry key and later look at the DACL via the built-in ACL editor, you'll see that Everyone is granted all permissions. (Depending on which version of the operating system you are using, there may not be a clear distinction in the user interface between a NULL DACL and a DACL that grants everyone all access.)

DACL Evaluation

Recall from Chapter 3 that the operating system looks at three pieces of information in order to perform an access check:
5. The authorization attributes for the principal requesting access

6. The intentions specified in the request

7. The security settings for the object to be accessed


The authorization attributes are cached in the token. The intentions are stated programmatically (either via an explicit access mask passed as a parameter, or via the intrinsic semantics of the API being used to access the object). The security settings for the object are stored in the security descriptor. The AccessCheck API pretty much sums up these ideas:

BOOL AccessCheck(


PSECURITY_DESCRIPTOR psd,
// in


HANDLE ClientToken,

// in


DWORD DesiredAccess,

// in


PGENERIC_MAPPING pgm,

// in


PPRIVILEGE_SET pps,

// out


LPDWORD PrivilegeSetLen,
// in, out


LPDWORD GrantedAccess,

// out


LPBOOL AccessStatus);

// out

Note that the first three parameters to this function correspond to the three elements mentioned earlier. The generic mapping structure allows any generic permissions in the DACL to be mapped correctly based on the class of object being accessed, and the privilege set indicates whether a privilege was used to effectively override the security settings for the object (SeTakeOwnershipPrivilege comes to mind). Those details aside, you are basically passing in the three core pieces of information (the token, security descriptor, and requested access mask) and getting back a boolean result (AccessStatus) that says whether or not the requested access was granted (GrantedAccess will be covered later).


Many systems programmers will never need to call AccessCheck, but under the covers, a check like this is being performed each time you open a handle to a secure executive object. Regardless of who initiates it, the access check is performed in a very well defined way (the description following may not reflect the actual physical implementation, but it does accurately describe the documented and observed behavior of the system). First the system creates an accumulator (a bitmask, 32 bits wide) to represent the set of permissions collected while traversing the DACL, and initializes all the bits to 0. Then the system looks at the mask requested by the client and determines whether to grant any of the permissions implicitly (for instance, if requested, read_control and write_dac are granted intrinsically if the owner SID in the security descriptor is present in the client's token). Some permissions might also be granted based on enabled privileges in the token (if requested, write_owner will be granted as long as SeTakeOwnershipPrivilege is enabled, for instance). Any permissions granted based on these implicit rules are reflected by latching the appropriate bits in the accumulator.


If the permissions accumulated so far don't satisfy the client's requested access mask, the system begins to traverse the DACL from top to bottom, trying to satisfy the client's request (if a NULL DACL is present, we're done; the system simply grants the requested access). The system checks each ACE it encounters for relevance to the current client request. Relevance means two things: The SID in the ACE must be present and enabled in the client's token, and the mask in the ACE must relate to permissions the client is requesting that have not yet been collected in the accumulator. In mathematical terms:

DWORD _relevantPermissionsInAceMask(


DWORD accumulator, DWORD desiredAccess, DWORD aceMask)    
{


return (desiredAccess & ~accumulator) & aceMask;
}

If this function returns 0 for any given ACE, that ACE is not relevant, and the system skips it and moves on to the next one. If, on the other hand, the ACE is relevant and is positive (and the SID in the ACE is present and enabled in the client's token), the system latches the corresponding bits in the accumulator.


This process continues until one of three things happens: If all requested permissions have been accumulated, access is granted, and the traversal ends immediately. If a relevant negative ACE is found, access is denied, and the traversal ends immediately. If the traversal exhausts all the ACEs in the DACL without accumulating the requested permissions, access is denied.


If access is granted at this point and a restricted token is in use (see Chapter 4), the system repeats this algorithm a second time using the list of restricting SIDs in the token. Only if both passes say it's OK will access be granted. The list of restricting SIDs is just that: restricting. It can only be used to restrict access, not to expand access.


The handling of negative ACEs brings up an important point about DACL ordering. Negative ACEs must always be traversed first in order to guarantee the expected semantics of a DACL (if you explicitly deny someone access, they are guaranteed to be denied); thus, they must be at the top of the DACL.
 The platform SDK documentation states that this is the recommended order for DACLs, but if you violate this ordering, you'll be doing yourself and your customers a vast disservice because the DACLs that you create will behave very differently from the DACLs created by the operating system (and other third-party vendors). Don't do this. Also note that the exact ordering of ACEs gets a bit trickier in Windows 2000 with its more complex inheritance model. These differences are discussed later in the chapter.

A Note on Correctness and Efficiency

As DACLs get longer (more ACEs) and tokens get fatter (more groups and aliases), evaluation obviously becomes more expensive.
 A great way to help reduce the overhead of an access check (and improve the security and robustness of your application) is to only ask for the permissions you really need. Many programmers have gotten into the habit of opening objects and requesting all possible permissions (process_all_access, key_all_access, etc.), often because they are too lazy to look up the more specific access masks that they really should be using.
 This generally sacrifices correctness and efficiency at runtime for efficiency at development time, which is rarely good. Most developers debug and test their code while running under their own administrative accounts (I know of very few developers who are not administrators on their own development machines). Code written this way will often break when run in less privileged security contexts, and these sorts of bugs are often difficult to root out. Code written this way will also chew up more CPU cycles because the DACL needs to be traversed further to grant the requested permissions.


With this in mind, there are occasions when you really need the system to traverse the entire DACL. An example is when you want to determine the full range of possible permissions that could be granted, given a particular security descriptor. This is where the maximum_allowed access mask (which won't ever be found in a DACL) comes in. If you pass this flag to AccessCheck (via the DesiredAccess parameter), the entire DACL will be traversed and the result of the traversal will be placed into the 32-bit mask pointed to by the GrantedAccess parameter. (I used to wonder what GrantedAccess was for until I discovered this feature.)

How the SACL Works

The SACL physically looks just like the DACL, but the +/- column means something totally different. Rather than granting or denying a permission, a positive ACE in the SACL says that the system should audit a successful acquisition of a permission, and a negative ACE says that the system should audit a failed acquisition of a permission (where success and failure are determined based on access checks alone). Note that for efficiency, an ACE in the SACL can be both positive and negative (in other words, a single ACE can audit both success or failure).


When I say acquisition, I am implying that auditing takes place at the same time as access control. Interestingly enough, calling AccessCheck does not cause the SACL to be evaluated (and thus no audits are generated by this API). Rather, another family of functions exists for performing SACL traversal and requisite audit generation. Here are two of the most commonly used auditing functions:
BOOL ObjectOpenAuditAlarm(


LPCTSTR SubsystemName,

// in


LPVOID Handleld,


// in


LPTSTR ObjectTypeName,

// in


LPTSTR ObjectName,

// in

PSECURITY_DESCRIPTOR psd, 
// in


HANDLE ClientToken,

// in


DWORD DesiredAccess,

// in


DWORD GrantedAccess,

// in


PPRIVILEGE_SET pps,

// in


BOOL ObjectCreation,

// in


BOOL AccessGranted,

// in

LPBOOL pfGenerateOnClose); 
// out

BOOL ObjectCloseAuditAlarm(
     
LPCTSTR SubsystemName,

// in

LPVOID HandleId,


// in

BOOL GenerateOnClose);

// in

The idea is that any subsystem that exposes auditable objects will call the first function immediately after one of the objects is opened (or fails to be opened because of access checks) and when the object is closed. Events will be added to the audit log only if the local security policy indicates that object access (or "file and object access" in Windows NT 4.0) should be audited.

In the first function, if you get past the first four parameters (which are purely informational for recording in the audit log), you'll see that most of the remaining parameters are similar to those passed to AccessCheck. In fact, some of these parameters you'll retrieve from AccessCheck and simply pass through to this function, the most important being AccessGranted, which indicates whether the client's request was successful or not. This maps directly to the AccessStatus out parameter generated by a call to AccessCheck. The output parameter, pfGenerateOnClose, is a flag that you should pass through to ObjectCloseAuditAlarm that indicates whether or not an audit should be generated (if object access auditing is disabled in the local security policy, no audits should be generated at all). This allows you to call these functions all the time, regardless of whether auditing is enabled or disabled, thus allowing the system to transparently add alarms at some future date. (I won't even speculate as to what shape this will take, or what future version of the operating system will support them.)


When you call these auditing functions, you are adding events to a very tightly controlled log – the security event log. As such, your process must indicate its trustworthiness to the system by enabling SeAuditPrivilege ("Generate security audits"), which is not granted to any principals or groups by default. The System logon session has this privilege, which makes sense because processes running in this logon session are trusted to help enforce the security policy of the system (they are part of the TCB). If your server runs under a distinguished account, that account will need to be granted this privilege, and you'll need to enable it manually (if you run in the System logon session, this privilege is enabled by default).


Here's a code fragment that performs access control and auditing for a fictitious user-defined class of object called a Widgit:

// imagine we were storing our widgit's security

// descriptors in a database somewhere...

extern void* _getWidgitSD(DWORD widgitld);

extern Widgit* _getWidgit(DWORD widgitId, DWORD access);
// from Chapter 4

HANDLE _getEffectiveToken(DWORD dwDesiredAccess, 


BOOL bWantImpToken = FALSE, 

SECURITY_IMPERSONATION_LEVEL impLevel = SecurityImpersonation);
Widgit* _tryToOpenWidgit(DWORD widgitId, DWORD dwDesiredAccess) 
{


//to keep this short, I skip obvious error checks 

void* psd = _getWidgitSD(widgitld); 

HANDLE htok = _getEffectiveToken(TOKEN_QUERY);

// perform the access check


PRIVILEGE_SET privSet;


DWORD cbprivSet = sizeof(privSet);


DWORD dwGrantedAccess;


BOOL bAccessGranted;

if (!AccessCheck(psd, htok, dwDesiredAccess,



&g_widgitGenericMapping, &privSet, &cbprivSet,



&dwGrantedAccess, &bAccessGranted) || !bAccessGranted) 

{



SetLastError(ERROR_ACCESS_DENIED);



return 0; 

}

// open the object


Widgit* pWidgit = _getWidgit(widgitId, dwGrantedAccess);


// perform the audit


if (!ObjectOpenAuditAlarm(L"WidgitSubsystem",



pWidgit, L"Widgit", L"",



psd, htok, dwDesiredAccess,



dwGrantedAccess, &privSet,



FALSE, bAccessGranted,



&pWidgit->m_bGenerateAuditOnClose)) 

{



delete pWidgit; 

}


return pWidgit; 
}

void _closeWidgit(Widgit* pWidgit) 
{


ObjectCloseAuditAlarm(L"WidgitSubsystem", pWidgit, 


pWidgit->m_bGenerateAuditOnClose); 

delete pWidgit;

}

Managing SACLs

There is no particular required order for ACEs in a SACL, because negative entries don't cancel positive entries as they do in a DACL. In order to view or change the SACL on an object, however, you must open the object using a special permission: access_system_security. This permission won't be found in any DACL
; rather, it is a special permission that is granted purely based on whether a certain privilege has been enabled in your token: SeSecurityPrivilege. Administrators are granted this privilege by default, although you'll have to enable it manually because it is not enabled by default.


Whereas DACLs are discretionary, and the read_control and write_dac permissions are granted implicitly to the owner (and can be delegated by the owner to others), SACLs are nondiscretionary. The owner of an object has no special permissions with regard to the SACL. This often surprises developers who are new to security. Just keep in mind what auditing is all about; an administrator needs the ability to transparently apply audits to the system without anyone being able to subvert or remove the audit settings, or even detect that they are being audited. Using privileges helps enforce these global policies.


Here's an example of applying a SACL to the current thread
, using SetSecurityInfo (which is discussed shortly):

// first enable SeSecurityPrivilege 
HANDLE htok; 
OpenProcessToken(GetCurrentProcess(), 


TOKEN_QUERY | TOKEN_ADJUST_PRIVILEGES, &htok);
TOKEN_PRIVILEGES tpOld; 
if (!_enablePrivilege(htok, SE_SECURITY_NAME, true, tpOld)) 

throw "You do not have SeSecurityPrivilege!";
// open a session to the current thread,
// requesting read/write access to its SACL
HANDLE hThread = OpenThread(ACCESS_SYSTEM_SECURITY, 




FALSE, GetCurrentThreadId()); 
// don't need that privilege anymore 
_restorePrivilege(htok, tpOld);
// set the SACL

SetSecurityInfo(hThread, SE_KERNEL_OBJECT, 


SACL_SECURITY_INFORMATION, 0, 0, 0, g_psacl);

CloseHandle(hThread);

And here's a somewhat simpler example of doing the same to a file, using SetNamedSecurityInfo:
// first enable SeSecurityPrivilege
HANDLE htok;
OpenProcessToken(GetCurrentProcess(), 


TOKEN_QUERY | TOKEN_ADJUST_PRIVILEGES, &htok);
TOKEN_PRIVILEGES tpOld; 
if (!_enablePrivilege(htok, SE_SECURITY_NAME, true, tpOld)) 

throw "You need to have SeSecurityPrivilege!";
// set the SACL

SetNamedSecuritylnfo(L"c:\\foo.txt", SE_FILE_OBJECT, 


SACL_SECURITY_INFORMATION, 0, 0, 0, g_psacl);
// don't need that privilege anymore 
_restorePrivilege(htok, tpOld);

Security Descriptors and Built-in Objects

For built-in objects, four functions exist that allow you to easily retrieve and adjust security descriptor settings:
GetSecurityInfo 
GetNamedSecuritylnfo 
SetSecuritylnfo 
SetNamedSecuritylnfo
Here's the first function for retrieving a security descriptor:

#include <aclapi.h> 
DWORD GetSecurityInfo (


HANDLE Handle,


// in


SE_OBJECT_TYPE ObjectType,
// in


SECURITY_INFORMATION Info,
// in


PSID* ppsidOwner,


// out, optional


PSID* ppsidGroup,


// out, optional


PACL* ppDacl,


// out, optional


PACL* ppSacl,


// out, optional


PSECURITY_DESCRIPTOR* ppsd);
// out


Handle is virtually any type of handle that the system exposes (file, registry key, service, mutex, process – you name it). A handle to a service object, a handle to a registry key, and a handle to a thread are not polymorphic with each other – they are implemented by different parts of the system – and thus ObjectType is a required hint to the system indicating the type of handle you are passing, Info is a bitmask that indicates which elements of the object's security descriptor you want to see, and ppsd points to where the system should drop a pointer to the information you requested. (This function allocates memory and fills it with a self-relative security descriptor, and you should call LocalFree to free the memory when you're done.)


Because you'll likely want to access individual elements of the security descriptor, the API provides four optional parameters to save you the work of calling GetSecurityDescriptorxxxx yourself, but don't free these pointers; they point into the self-relative security descriptor that you'll free with a single call to LocalFree.


GetNamedSecurityInfo looks and acts similarly, except you don't have to provide a handle to the object; the first parameter is instead a string specifying the name of the object. In the case of a named mutex, a file, or a service, it's pretty obvious what the name should be, but in the case of something like a registry key, there are special strings that indicate which hive you want to drill into (see the documentation for se_object_type for the details). This function won't work with objects that aren't named with strings (such as processes, threads, and tokens).

Here's the corresponding function to change the security descriptor on a built-in object:
#include <aclapi.h>

DWORD SetSecurityInfo(


HANDLE Handle,


// in


SE_OBJECT_TYPE ObjectType,
// in


SECURITY_INFORMATION Info,
// in


PSID psidOwner,


// in, optional


PSID psidGroup,


// in, optional


PACL pDacl,



// in, optional


PACL pSacl);


// in, optional

The first three parameters are used in the same way as the previous function, and the four optional parameters are somewhat less optional now – if Info indicates that you are providing a DACL, say, then this function uses pDacl to figure out what sort of DACL should be applied. The code snippets provided earlier in this chapter demonstrate a couple of usage patterns of these functions, including how to set a NULL DACL. Those snippets use SetNamedSecurityInfo, which takes a string as opposed to a handle, but otherwise the usage pattern is exactly the same.

A caveat is worth mentioning since I've already talked about SACLs: don't ask to read or change the SACL unless you have successfully enabled SeSecurityPrivilege (see the code snippets in the previous section).
Security Descriptors and Private Objects

Prior to Windows NT 4.0, the four security descriptor functions described previously were not available. Rather, each subsystem exposed a different function to get and set security settings. This makes sense (although it tends to enlarge the surface area of the API) because as I mentioned earlier, there is no central repository for security descriptors; rather, each subsystem manages them separately. (The system doesn't mandate any particular persistent storage format; for AccessCheck to work, the system simply needs to provide an in-memory representation of the security descriptor.)


A valid implementation of GetSecurityInfo (and friends) would be one that consists (at least partly) of a massive switch statement that delegates to the individual subsystems (the subsystem is determined based on the ObjectType parameter). Clearly this won't work for arbitrary third-party objects like the Widgit example given earlier. However, there is enough support provided by the Windows API to make it relatively easy to seamlessly extend this model to your own private classes such as the Widgit. I've already demonstrated the code for performing access checks for Widgits, but what I didn't show was how the security descriptor for each Widgit was created in the first place, and how to expose a user interface to an administrator to view or edit the security descriptor.


Creating your own  security  descriptors  is  trivial,   given  the  CreatePrivateObjectSecurity API:
BOOL CreatePrivateObjectSecurity(


PSECURITY_DESCRIPTOR ParentDescriptor,
// in, optional


PSECURITY_DESCRIPTOR CreatorDescriptor,
// in, optional


PSECURITY_DESCRIPTOR* ppNewDescriptor,
// out


BOOL IsContainer,




// in


HANDLE hToken,




// in


PGENERIC_MAPPING GenericMapping);

// in

Recall from earlier in the chapter the way CreateMutex works with regard to security. The system looks in three places to discover the security settings for a new object being created: the security descriptor provided by the creator via lpsecurity_attributes, the parent object's DACL, and finally, the creator's token, where a default owner, group, and DACL are stored. When the system uses the default DACL in the creator's token, it converts the generic permissions in the default DACL into the specific and standard permissions that are meaningful for the class of object being created. Given this, and ignoring the IsContainer parameter that is described later, can you guess how CreatePrivateObjectSecurity works?

This API provides all the core functionality that Windows uses internally when creating security descriptors for built-in objects. The system will use any elements specified by the creator via the CreatorDescriptor parameter as the preferred choice. If an element is missing from CreatorDescriptor (or if this parameter is NULL), the system will follow the same algorithm described earlier for built-in objects, looking in the specified parent's security descriptor (if present) and the specified token to discover appropriate default values.


CreatePrivateObjectSecurity returns a security descriptor that is fully formed
 and that can be passed as a parameter to AccessCheck and friends. Your job is to manage the resulting security descriptor (this often means storing it somewhere in persistent storage). During the design phase of your project, you'll need to figure out when it makes sense to perform access checks and audits. You'll also need to provide either a programmatic or GUI-based editing mechanism to allow an administrator to adjust these DACLs. In Windows 2000, the system exposes a powerful access control editor that you can include in your own applications.

Hierarchical Object Models and ACL Inheritance

In the beginning, there was the file system. The file system consisted of a hierarchy of directories and files, and it was good. The design of the registry was similar in many respects, and it was also good. To allow these systems to support thousands of files and keys, it was necessary to provide some help to administrators for managing the security descriptors associated with each of these objects, and thus the notion of ACL inheritance was born.


A strategy of ACL inheritance leverages the natural hierarchy of a system in order to administer security. This directly opposes the laissez-faire approach of having each process choose its own default DACL for new objects, and instead prefers to assign default DACLs to new objects by propagating entries in the parent's DACL. This tends to provide a more consistent flow of permissions across a hierarchy of objects.


For instance, looking at the root of my NTFS partition, I can see that everyone is granted all permissions. However, as soon as I dip down into the profiles directory (\Documents and Settings on Windows 2000, %systemroot%\ Profiles on Windows NT 4), I start to see tighter control being applied (I've simplified these DACLs a bit for brevity):

grant full control to Administrators 
grant read control to Everyone
If I drill down even further into Alice's profile directory, I see tighter control still:

grant full control to Administrators 
grant full control to Alice

Because of the effects of ACL inheritance, files and directories created in the root of this NTFS partition inherit the one entry from the DACL on the root directory that grants everyone all access. Files and directories created in the profile directory inherit entries from the profile directory's DACL, and thus grant read-write access to Administrators, while everyone else gets read access. And finally, files created in Alice's profile directory are only accessible by Alice or by an administrator. ACL inheritance makes this flow of permissions very natural.


ACL inheritance matured quite a lot in Windows 2000, but it makes sense to first look at the Windows NT 4 model to understand the changes made in Windows 2000.

ACL Inheritance in Windows NT 4

Let's take file system DACLs as a concrete example. ACL inheritance comes into play whenever you create a new file or directory without specifying a custom DACL via the lpsecurity_attributes parameter to CreateFile. The system looks at the parent directory where you are creating the new object and copies inheritable ACEs to form the new DACL. For the sake of simplicity, I didn't mention this before, but each ACE actually has an extra bitmask containing instructions that indicate whether the ACE should be inherited at all, and some semantics controlling when and how the inheritance should occur.


A very simple inheritance scheme would be to simply have a boolean value indicate whether the inheritable ACE should propagate to child objects, but this breaks down in the file system because there are two types of objects that can be created there: files and directories. Consider the following inheritable ACE:
grant 0x00000020 to Bob, and inherit for all new children 
Here's the mapping of permission 0x00000020 for files and directories (from winnt.h):
#define FILE_EXECUTE     (0x0020)    // file 
#define FILE_TRAVERSE    (0x0020)    // directory

These permissions have very little to do with one another. So it turns out that it's not enough to simply say that you want an ACE to be inherited by children; you also need to be able to say what class of child object should inherit the ACE. Because the file system only has two classes of objects, the inheritance scheme in Windows NT 4 was designed to accommodate two classes of objects: containers (directories) and objects (files).


Here are the various inheritance flags that can be present in an ACE (from winnt.h)
:
#define OBJECT_INHERIT_ACE        (0xl)

#define CONTAINER_INHERIT_ACE     (0x2)

#define NO_PROPAGATE_INHERIT_ACE  (0x4)

#define INHERIT_ONLY_ACE          (0x8)

To grant file_execute permissions to Bob via ACL inheritance when new files are created, you could give the parent directory the following ACE:

grant 0x00000020 to Bob, inheritance: 0x01

When new subdirectories are created, this ACE will be ignored because it's only designed to be propagated to files, so child directories won't accidentally be granted file_traverse. However, remember that to enable the ACL inheritance mechanism, you had to modify the DACL on the parent directory, and in doing so, you have inadvertently granted Bob file_traverse permission on the parent directory itself, which was not the intention at all. To really clarify things, you can do the following instead:

grant 0x00000020 to Bob, inheritance: 0x01   |   0x08

By adding in the inherit_only_ace flag, this ACE now has no effect at all on the parent directory, and is only stored in the parent's DACL so that it can be propagated to children via ACL inheritance.


I picked the file_execute/file_traverse bit for these examples because it has such different meaning depending on whether it is applied to a file or a directory, and it therefore illustrates the point that inheritable ACEs need to have a permission mask that makes sense for child objects. The safest way to go is to simply keep inheritable ACEs separate from noninheritable ACEs by always using the inherit_only_ace flag in any inheritable ACEs.


To simplify administration (and save space in ACLs), most of the file system permissions were designed to have similar meanings when smeared across both files and directories (the following was excerpted and simplified from winnt.h):

#define FILE_READ_DATA        (0x0001)      // file

#define FILE_LIST_DIRECTORY   (0x0001)      // directory

#define FILE_WRITE_DATA       (0x0002)      // file

#define FILE_ADD_FILE         (0x0002)      // directory

#define FILE_APPEND_DATA      (0x0004)      // file

#define FILE_ADD_SUBDIRECTORY (0x0004)      // directory

#define FILE_READ_EA          (0x0008)      // file & dir

#define FILE_WRITE_EA         (0x0010)      // file & dir

#define FILE_EXECUTE          (0x0020)      // file

#define FILE_TRAVERSE         (0x0020)      // directory

#define FILE_DELETE_CHILD     (0x0040)      // directory

#define FILE_READ_ATTRIBUTES  (0x0080)      // file & dir
#define FILE_WRITE_ATTRIBUTES (0x0100)      // file & dir

Thus it is common in file system ACLs to have inheritable ACEs that also apply directly to the container object itself. A great example of this is file_read_data/file_list_directory, which has a very nice symmetry: granting read access to the directory and all its children can be done with a single ACE marked with an inheritance mask of 0x03. This doesn't work so well with FILE_EXECUTE and FILE_TRAVERSE.

The only flag that still needs explaining is the somewhat esoteric inherit_no_propagate, which indicates that during ACL inheritance, the inherited ACE in the child should have its inheritance mask cleared. This allows you to create inheritable ACEs that only affect direct children, as opposed to grandchildren. I was curious to see if this flag was actually used by the operating system, so I hacked up a quick program to scan my NTFS partition for directories with ACEs having this flag. I didn't find any directories using this flag on either Windows 2000 or Windows NT 4.


After this discussion, you should be able to see one reason why the IsContainer parameter of CreatePrivateObjectSecurity exists. You need to indicate to the system which types of inheritable ACEs you want to flow from the parent: ones marked with the container_inherit_ace flag, or ones marked with the object_inherit_ace flag. A second reason for having this parameter is one of efficiency: by knowing that a leaf object is being created, the system can avoid adding ACEs designed solely for propagating inheritable permissions to children (by definition, leaf objects will never have children).

Maintaining Consistency

Don't confuse ACL inheritance with runtime access control. Inheritance is used to help an administrator maintain a consistent security policy in a large hierarchy of objects without too much micromanagement of individual objects. However, at runtime, when access checks are performed, the system does not search up the hierarchy looking for inheritable ACEs. All ACEs are assumed to be statically assigned to each object, either manually or via inheritance. This makes the system perform well.


What this means is that at object creation time, the system provides a convenient ACL inheritance service, giving the new object a default DACL consistent with where it lives in the hierarchy. But once the object has been created, it is possible to modify the DACL and either remove or augment the ACEs that were initially provided via inheritance. In other words, it is possible for an administrator to individually modify the DACL on each file and directory in the system so that there is no indication that there was ever any consistent flow of permissions at all. (Obviously, doing this is chaotic and would not be very desirable, but nothing inhibits it.)


Windows NT 4 provides a rather crude way of reducing the chaos: Anytime an administrator makes a change to the DACL of an existing directory via the file system ACL editor, the ACL editor provides an option to recursively overwrite the DACLs of all the children (simply copying the parent DACL to child directories or files or both). This brute-force approach works reasonably well for simple systems, but makes it impossible to protect small, critical sections of the file system (where micromanagement is desirable) from sweeping changes initiated closer to the root of the tree.

ACL Inheritance in Windows 2000

This problem is addressed violently (and effectively) in Windows 2000, and the semantics of the way inheritance works are quite different from Windows NT 4 as a result. In Windows 2000, by default, inheritable entries flow to child objects not only when the child is first created, but at any time thereafter when the parent or child's DACL changes. The system maintains consistency (of inherited ACEs) at all times throughout the tree, avoiding the chaos that often develops in Windows NT 4. As an important bookkeeping measure, ACEs inherited from a parent object are distinguished in the child with the following inheritance flag (introduced in Windows 2000):

#define INHERITED_ACE   (0x10)


The access control editor GUI protects ACEs marked with this flag from modification, directing the user to traverse up the hierarchy to the parent if those permissions need to be changed. In fact, if you use the Advanced dialog box to edit an ACL, you'll see that the icons for inherited entries are shown slightly dimmed. The automatic synchronization of inherited entries is very powerful, especially when used in concert with a couple of security descriptor flags introduced in Windows 2000:

#define SE_DACL_PROTECTED
(0x1000)

#define SE_SACL_PROTECTED
(0x2000)

These flags, when present in a security descriptor, cause the inheritance flow (in the DACL and SACL, respectively) to be interrupted at that point, starting a new root from which inheritable entries can flow once again (see Figure 6.4).
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Figure 6.4   Blocking the inheritance flow by protecting a node


This allows various regions in a large hierarchical system to be controlled independently, without being affected by inheritable ACEs higher in the tree. Let's make this concrete by building a sample hierarchy of objects. I'll start with the root object (say this is a mount-point in the file system represented by a drive letter). This root object (C) has a DACL with two ACEs:

grant Bob file_list_directory, inheritance: 0x00 
grant Friends file_all_access, inheritance: 0x03

The first ACE applies directly to C, whereas the second ACE applies to C and will be inherited by any children created under C. Figure 6.5 shows the results. 
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Figure 6.5   Applying a DACL to an object


Now let's create some child objects (directories and files). Figure 6.6 shows the new picture, with a few subdirectories and files created as children of C. All the new directory objects start life with the following default DACL simply by applying the rules of ACL inheritance at creation time:

grant Friends file_all_access, inheritance: 0x13

The new files (foo.txt and bar.txt), being leaf objects and therefore without the potential to have children, start life with a similar DACL:

grant Friends file_all_access, inheritance: 0x10

Note that the ACE propagated to each child is marked with the inherited_ace flag (0x10) to keep it distinct from any direct permissions that may be defined directly on the child later on.
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Figure 6.6   New children inherit ACEs from parent

Now let's change the DACL on directory E with the following code:
// form the SID for BUILTIN\Administrators 
SIDWithTwoSubauthorities sid = {



SID_REVISION, 2,



SECURITY_NT_AUTHORITY,



SECURITY_BUILTIN_DOMAIN_RID,



DOMAIN_ALIAS_RID_ADMINS};
DWORD cb = sizeof(ACL) + _maxVersion2AceSize; 
ACL* pdacl = (ACL*)malloc(cb); 
InitializeAcl(pdacl, cb, ACL_REVISION); 
AddAccessAllowedAceEx(pdacl, ACL_REVISION, 0, FILE_LIST_DIRECTORY, &sid);

SetNamedSecurityInfo (L"c:\\d\\e", SE_FILE_OBJECT, 


DACL_SECURITY_INFORMATION, 0, 0, pdacl, 0);

free(pdacl);

The first few lines of code build a DACL (this procedure is discussed later in this chapter) with a single ACE that grants file_list_directory to Administrators. The DACL applied to E will actually end up with two entries:

grant Administrators FILE_LIST_DIRECTORY, inheritance: 0x00 
grant Friends FILE_ALL_ACCESS, inheritance: 0x13

SetNamedSecurityInfo first applies the DACL to the object, then checks the security descriptor to see if the se_dacl_protected flag is set (it's not, by default), so the function flows the inheritable ACEs from D to E once again, ensuring consistency. Figure 6.7 shows the new system. Note that the new permission that was added does not flow to children, because the ACE specified didn't have any inheritance flags set.
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Figure 6.7   Maintaining consistency of inherited ACEs


Check out this next block of code, and try to figure out what the system will look like after it is executed:

// form the SID for BUILTIN\Guests 
SIDWithTwoSubauthorities sid = { 


SID_REVISION, 2,



SECURITY_NT_AUTHORITY,



SECURITY_BUILTIN_DOMAIN_RID,



DOMAIN_ALIAS_RID_GUESTS};
DWORD cb = sizeof(ACL) + _maxVersion2AceSize; 
ACL* pdacl = (ACL*)malloc(cb); 
InitializeAcl(pdacl, cb, ACL_REVISION); 
AddAccessDeniedAceEx(pdacl, ACL_REVISION,


CONTAINER_INHERIT_ACE | OBJECT_INHERIT_ACE, FILE_ALL_ACCESS, &sid);

SetNamedSecurityInfo(L"c:\\d", SE_FILE_OBJECT,


DACL_SECURITY_INFORMATION, 0, 0, pdacl, 0);

free(pdacl);

This code applies a DACL with a single inheritable ACE, and so the system will first compute the full DACL on directory D by combining the specified ACEs with the parent's inheritable ACEs, resulting in the following DACL for D:

deny Guests file_all_access, inheritance: 0x03 
grant Friends file_all_access, inheritance: 0x13
Once the system has calculated the resulting DACL for D, it then updates the inheritance flow down the tree, so the DACL on directory E now looks like this (see Figure 6.8):

grant Administrators file_list_directory, inheritance: 0x00 
deny Guests file_all_access, inheritance: 0x13 
grant Friends file_all_access, inheritance: 0x13

The reason why the denied entry isn't at the top of the DACL is discussed in the next section.
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Figure 6.8   Reflowing inheritable ACEs throughout an entire subtree

Let's say that deep down in the file system (at directory G, perhaps) you needed to apply a totally different security policy (for instance, everyone has all access below a certain point). You'd need to interrupt the flow of inheritance by adding the se_dacl_protected flag to the security descriptor of G. Windows 2000 provides two bitmasks that you can pass to Set(Named)SecurityInfo to either set or clear this flag, plus two more to control a similar flag for the SACL:
#define PROTECTED_DACL_SECURITY_INFORMATION
0x80000000

#define PROTECTED_SACL_SECURITY_INFORMATION
0x40000000

#define UNPROTECTED DACL SECURITY INFORMATION
0x20000000

#define UNPROTECTED_SACL_SECURITY_INFORMATION
0x10000000

Here's a code snippet that interrupts the flow of inheritance at directory G:

// form the SID for Everyone 
SID sid = {SID_REVISION, 1, SECURITY_WORLD_SID_AUTHORITY, SECURITY_WORLD_RID};
DWORD cb = sizeof(ACL) + _maxVersion2AceSize; 
ACL* pdacl = (ACL*)malloc(cb); 
InitializeAcl(pdacl, cb, ACL_REVISION); 
AddAccessAllowedAceEx(pdacl, ACL_REVISION,


CONTAINER_INHERIT_ACE | OBJECT_INHERIT_ACE, FILE_ALL_ACCESS, &sid);

SetNamedSecurityInfo(L"c:\\d\\e\\g", SE_FILE_OBJECT, 

DACL_SECURITY_INFORMATION | PROTECTED_DACL_SECURITY_INFORMATION, 

0, 0, pdacl, 0);

free(pdacl);

The results are shown in Figure 6.9. Now, even if you were to make changes to the inheritable ACEs of C, D, or E, directory G will not be affected by these changes because the flow is interrupted at G. I should note that the built-in access control editor UI does provide an option (hidden in the Advanced dialog) so that an administrator can sweep an entire hierarchy of objects from any node, forcefully restoring the flow of inheritance from that node down. Figures 6.10 to 6.12 show various dialogs provided by the Windows 2000 access control editor, with annotations that show which options affect which flags in the security descriptor and DACL.
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Figure 6.9   Flow of inheritance blocked at directory G
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Figure 6.10 Windows 2000 access control editor property page
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Figure 6.11    The Advanced dialog of the access control editor
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Figure 6.12   Editing an individual ACE in the Advanced dialog
Order of ACEs in Windows 2000 ACLs

Windows 2000 ACLs are managed much differently than their older cousins. Each inherited ACE is tracked (via the inherited_ace flag mentioned earlier) and is effectively kept read-only to maintain a consistent flow of permissions throughout the hierarchy. Still more flexibility can be gained from this model, though. If an administrator has a large hierarchy of objects, and one object requires micromanagement, the administrator has two options: either block the flow of inheritance completely with se_xxxx_protected and take over management of that object and all its children as if it were disconnected from the rest of the hierarchy, or apply direct ACEs to that object and hope for the best. Overuse of the first option can lead to chaos, because each node that blocks inherited permissions basically becomes a new subtree that must be managed independently. The second option is problematic unless the order of ACEs is addressed.

Imagine that throughout a hierarchy, you wanted to grant delete access to everyone but Bob. This is easy – just apply the following ACEs to the root object:

deny  DELETE to Bob, inheritance: 0x03 
grant DELETE to Everyone, inheritance: 0x03

Now, somewhere deep in the hierarchy, you decide that there is one particular object that Bob needs to be able to delete, so you add an ACE directly to that object that explicitly grants him permission:

deny delete to Bob, inheritance: 0x13 
grant delete to Everyone, inheritance: 0x13 
grant delete to Bob, inheritance: 0x00

See the problem? If the system managed ACLs in this way, you wouldn't be able to micromanage individual objects without cutting off the flow of inheritable ACEs, because denied entries would always be evaluated first, regardless of whether or not they were inherited or directly applied to the object in an attempt at micromanagement.


Fortunately this is not the case. In Windows 2000-style ACLs, ACEs that are applied directly to an object always take precedence over those that were inherited. This allows the administrator to micromanage an object in the hierarchy while still keeping a consistent flow of permissions. (The potential for chaos still exists, because each object could be micromanaged in this way, but it would take a lot more dedicated effort!) Thus the actual ACL ordering in the previous example is as follows (also see Figure 6.13):
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Figure 6.13    Micromanaging a single node without blocking the flow
grant delete to Bob, inheritance: 0x00 
deny delete to Bob, inheritance: 0x13 
grant delete to Everyone, inheritance: 0x13

Note that the DACL evaluation algorithm discussed earlier works even in this scenario. Once delete permission has been granted in this case, even if the traversal continues in order to authorize other permissions, the algorithm will treat the second (negative) ACE as irrelevant because the delete access bit has been latched in the permissions accumulator.


The order of ACEs in Windows 2000-style DACLs is as follows:
8. Direct negative ACEs

9. Direct positive ACEs

10. Inherited negative ACEs

11. Inherited postive ACEs


If you'd like to create Windows 2000-style ACLs for your own custom hierarchy of Objects, use CreatePrivateObjectSecurityEx (this function is discussed in detail shortly). If you have an existing hierarchy of objects using the older inheritance mechanism and want to upgrade, take a look at the ConvertToAutoInheritPrivateObjectSecurity API. This function is smart enough to compare the parent and child security descriptors, factor out what's common, and automatically create a flow of inherited entries. (This is akin to what happens to Windows NT 4 file system DACLs when an administrator installs the Security Configuration Editor, which upgrades the file system ACLs to use this new inheritance model.)


ACLs that take advantage of this new mechanism for inheritance are not distinguished by a new version number; they often will have the same version as their older cousins – version 2 ACLs. If you want to determine whether a particular ACL is participating in a Windows 2000-style automatic inheritance synchronization scheme, look for the following bits in the control word of the security descriptor by calling GetSecurityDescriptorControl:

SE_DACL_AUTO_INHERITED 
SE_SACL_AUTO_INHERITED

If you're writing code that runs on Windows NT 4 Service Pack 4 or greater, be aware that the file system may be using either the old or the new model, so be careful to take this into consideration when writing ACL manipulation code. The ACL programming section in this chapter provides examples demonstrating that this is possible (and not terribly difficult either).

Inheritance Using Generic Permissions

Imagine an industrial automation application for a candy factory modeled in a hierarchical fashion. The root object is the factory, with child objects representing gumball machines, chocolate bar machines, time clocks, security doors, and folders to organize these objects. These are all very different types of objects, and while the gumball and chocolate bar machines will likely define similar specific permissions, the time clocks and security doors will have very different specific permissions. In this system you can't play the bit-mapping game that the file system developers did and come up with a single set of specific permissions that works for all objects somewhat transparently. So how can you employ ACL inheritance in this scenario?


One answer is to use generic permissions to give yourself an extra level of indirection. On the factory and any folders, set up inheritable ACEs that grant only generic permissions as opposed to specific permissions. Generic permissions are meaningful across different classes of objects, because each class provides its own mapping via the generic_mapping structure that was introduced earlier in the chapter. You'll fill out one of these structures for each class of object you need to secure, and pass it any time you call CreatePrivateObjectSecurity(Ex) so the system can provide an appropriate mapping of each inherited ACE.

An Example

When building a system around Windows-based ACLs, you'll almost always start by discovering the classes of objects in the system along with their specific permissions; for each class, you'll need to figure out how to map generic permissions. Look at the following sample definition for a FOLDER (a class of object designed to organize other objects in the factory). Notice the traditional progression from defining specific permissions, to grouping them into the four generic categories, to creating a generic_mapping structure:

// excerpt from FOLDER.H

// first define the specific
permissions for folders

#define FOLDER_LIST_CONTENTS  0x00000001

#define FOLDER_ADD_ITEM       0x00000002

#define FOLDER_DELETE_ITEM    0x00000004
// group standard and specific permissions into the four
// categories of generic permissions (this is useful for
// documentation purposes so people know what they are
// getting when they use generic permissions)
#define FOLDER_READ  (STANDARD_RIGHTS_READ | FOLDER_LIST_CONTENTS )

#define FOLDER_WRITE (STANDARD_RIGHTS_WRITE | FOLDER_ADD_ITEM | FOLDER_DELETE_ITEM)

#define FOLDER_EXECUTE (STANDARD_RIGHTS_EXECUTE)

#define FOLDER_ALL (STANDARD_RIGHTS_REQUIRED | FOLDER_READ
| \ 



FOLDER_WRITE | FOLDER_EXECUTE)
// excerpt from FOLDER.CPP 
GENERIC_MAPPING g_gmFolder = {

FOLDER_READ,
// GenericRead

FOLDER_WRITE,
// GenericWrite

F0LDER_EXECUTE,  
// GenericExecute

F0LDER_ALL

// GenericAll

};

Note how careful I was in these definitions to include standard permissions in my calculations (the standard_rights_xxxx macros are just system-provided mappings onto read_control, delete, etc.). Also note how one can easily look at the definitions for folder_read, folder_write, and so forth and discover how generic permissions map for this class of object. This is important because the actual generic_mapping definition will not be included in the header file for your clients to see. For a real-world example, browse through winnt.h and search for key_read, token_read, and file_generic_read. This style is a good one to adopt.


Given these definitions, imagine that the root (factory) object had a DACL with the following inherit-only ACEs:

grant Employees generic_read, inheritance: 0x3   |   0x8 
grant Supervisors generic_all, inheritance: 0x3   |   0x8

If you were now to create a folder object as a child of the factory, you'd call CreatePrivateObjectSecurity to get a security descriptor for that object, passing the factory's security descriptor as the first parameter, NULL for the second parameter (indicating that you'll be satisfied with the DACL and SACL that results from propagating inherited entries), and finally the creator's token and the generic_mapping structure for the folder. The owner and group for the new security descriptor will be culled from the creator's token (recall that each token has a default owner and group for exactly this purpose). Since the folder is logically a container, you'd indicate this as well by passing true for IsContainer. Here's the code for creating the folder's security descriptor:
// imagine that we've previously constructed a security

// descriptor for the factory...

void* psdParent = _getFactoryObjectSD();
// retrieve the current security context

// (this was discussed in Chapter 4)

HANDLE htok = _getEffectiveToken(TOKEN_QUERY);

void* psdFolder = 0;

CreatePrivateobjectSecurity(psdParent, 0, &psdFolder, TRUE, htok, &g_gmFolder);

// if everything went OK, psdFolder should now point to 
// a fully formed security descriptor for the folder

The resulting DACL for the folder in this case will have four ACEs:

grant Employees GENERIC_READ, inheritance: 0x3   |   0x8
grant Employees FOLDER_READ, inheritance: 0x00 
grant Supervisors GENERIC_ALL, inheritance: 0x03   |   0x08 
grant Supervisors FOLDER_ALL, inheritance: 0x00

This results in Employees being able to enumerate the contents of the folder, but only Supervisors can manipulate those contents. Because true was specified for IsContainer, the system is aware that it needs to continue the flow of inheritance; thus, in addition to applying the generic permissions (transforming them into specific and standard permissions in ACEs that apply directly to the object), it copies the inherit-only ACEs and (this is important) leaves these inherit-only ACEs in their generic form so that they can be later applied poly-morphically to grandchildren of the factory.


In this example, I passed a null pointer for the CreatorDescriptor parameter, indicating that I didn't want to customize the child's DACL; instead, I wanted the system to use inheritance to form the new DACL. Had I instead passed a security descriptor for CreatorDescriptor, I could have provided some hints to the system. If CreatorDescriptor contains the se_dacl_defaulted flag, this indicates that the security descriptor provided by the creator should be used only in the case where the parent has no inheritable entries to contribute.
 If this flag is not present, this indicates that I want to completely override the inheritance mechanism and use the DACL in CreatorDescriptor instead. As you can see, se_dacl_defaulted is a temporary flag used to convey extra semantics during the construction of a new security descriptor.

Maintaining the Flow in Private Objects

If you pass a nondefault DACL or SACL (or both) to CreatePrivateObjectSecurity via CreatorDescriptor, you'll hide the parent's inheritable ACEs from the new child. This function follows the Windows NT 4 model of ACL inheritance, and does not attempt to maintain a consistent flow of inherited ACEs as is natural in Windows 2000. To flow inheritable ACEs always, you must use a function introduced in Windows 2000.

BOOL CreatePrivateObjectSecurityEx(


PSECURITY_DESCRIPTOR ParentDescriptor,
// in, optional


PSECURITY_DESCRIPTOR CreatorDescriptor,
// in, optional


PSECURITY_DESCRIPTOR *NewDescriptor,
// out


GUID *ObjectType,




// in, optional


BOOL IsContainerObject,



// in

ULONG AutoInheritFlags, 


// in


HANDLE Token,




// in


PGENERIC_MAPPING GenericMapping);

// in

Because this is a Windows 2000 API, it knows that inheritable ACEs from the parent are not just a suggested default, but must flow to children and be distinguished there via the inherited_ace flag. So, unlike CreatePrivateObjectSecurity, this function merges the ACEs you specify via the CreatorDescriptor parameter with the inheritable ACEs from ParentDescriptor. (The result is then placed in NewDescriptor, as with CreatePrivateObjectSecurity.) You should think of CreatorDescriptor as a container for the proposed DACL (and SACL) that you would like to place on the new object, with the awareness that you'll also get some ACEs from the parent to maintain a consistent flow throughout the hierarchy. In fact, if any inheritable entries in the parent's DACL or SACL change at some later time, you'll need to call this function for all the child objects to synchronize the inheritable ACEs. In this case, CreatorDescriptor would be the existing security descriptor on the child, and any ACEs found there that are flagged with inherited_ace would be completely replaced based on the current inheritable entries in ParentDescriptor.

CreatePrivateObjectSecurityEx is designed to automatically maintain the flow between a parent and a child, but you still need to actually call it when an administrator makes changes so that it can do its work. The system doesn't know what your hierarchy of objects looks like, so it's your job to traverse the hierarchy and keep the inheritable ACEs consistent by calling this function for each child object as ACLs change.


If the administrator makes a change to the root of the hierarchy, it can be rather expensive to traverse the entire tree synchronizing the inheritable entries, but it must be done to maintain consistency. To reduce the overhead of synchronizing inherited ACEs in child objects, there are several flags (specified via AutoinheritFiags) that you should use carefully:

SEF_DACL_AUTO_INHERIT 
SEF_SACL_AUTO_INHERIT

These flags indicate whether the DACL or SACL (or both) need to be synchronized, so you should always specify both of these flags when creating new child objects. When synchronizing existing children, however, use only the flags you need. For instance, if the DACL on an existing node changes, its children can be synchronized without modifying their SACLs.


Normally the system checks for the presence (and enabled state) of SeSecurityPrivilege before allowing modifications to a SACL. Once you've done this check once (at the node where a change was actually initiated), performing this check again is redundant when propagating inheritable SACL entries to children. The following flag disables this check:

SEF_AVOID_PRIVILEGE_CHECK


Normally, CreatePrivateObjectSecurityEx assumes that you are creating a security descriptor for a new object, and so it validates the resulting owner SID (which may be explicitly specified or defaulted in various ways) to make sure that it is a legal owner SID for the client. (Legal owner SIDs are verified in Token as being either the user SID or any group SIDs that are annotated with the se_group_owner flag.) When synchronizing ACLs in child objects, you're not changing the owner, and this check is inappropriate (it's not just wasting cycles, it's semantically inappropriate). You should use the following flag to disable it:

SEF_AVOID_OWNER_CHECK

In fact, if you specify both of the sef_avoid_xxxx flags described previously, you can pass NULL for the Token parameter, because it's not needed anymore. There are a few more parameters to this function:

SEF_DEFAULT_OWNER_FROM_PARENT 
SEF_DEFAULT_GROUP_FROM_PARENT 
SEF_DEFAULT_DESCRIPTOR_FOR_OBJECT

The first two flags simply indicate where the system should look for a default owner or primary group for the new object. If you specify these flags, the system will obtain the corresponding SID from ParentDescriptor; otherwise, the defaults in Token are used. The last flag is ignored completely unless you're working with version 4 ACLs.


Finally, pass NULL for ObjectType unless you're working with version 4 ACLs.

Maintaining the Flow in System Objects

Prefer to use the Set(Named)SecurityInfo functions when you're programmatically making changes to ACLs, especially if your code will run on Windows 2000. The older functions (SetFileSecurity, RegSetKeySecurity, etc.) do not automatically propagate inherited ACEs by default, unless the se_xxxx _auto_inherit_req (where XXXX is DACL or SACL) is set in the security descriptor control word.

Version 4 ACLs and the Directory Service

As of this writing, the operating system uses version 2 ACLs (which have the semantics described earlier, including the automatic flow of inherited ACEs) pretty much everywhere except the directory service. The directory is a very sophisticated beast that uses a new type of ACL (version 4) that provides an incredibly fine-grained approach to access control.


Version 4 ACLs look and act similar to the version 2 ACLs that you know and love, except that each ACE can apply not only to the object as a whole but also to individual properties (or sets of properties) on the object. The inheritance story also changes, because instead of using generic permissions, each class of object is identified with a GUID, and parent ACLs can have class-specific inherit-only ACEs that are inherited only by objects of the matching class.


Because CreatePrivateObjectSecurityEx is designed to work with both version 2 and version 4 ACLs, you can specify a GUID via the ObjectType parameter in order to determine which ACEs should be inherited. Recall that in version 2 ACLs, there are only two "classes" of objects: containers and noncontainers. Version 4 ACLs allow as many classes of objects as you like; the main drawback is that each ACE is larger, and because of the high granularity of the access control model, there tend to be many more ACEs in each ACL.

ACL Programming
I've managed to get through this entire chapter so far without showing you how to create a nontrivial ACL. Well, there are basically two ways of doing this: the easy way and the robust way. Back when Windows NT 4.0 was first released, it came with a couple of functions that were documented as being "high level" and "recommended," and until I personally experienced the nasty bugs in their implementation and the limitations in their design, I was a believer.


These two functions are known as SetEntriesInAcl and GetExplicitEntriesFromAcl and are deceptively easy to use. Both are designed to work with a data type known as explicit_access. This structure contains a trustee (basically this is just a principal, group, or alias specified by name or SID) as well as an access mask and a set of flags. The idea is that you, the developer, simply fill out a counted array of explicit_access records, specifying strings for principals and groups, and the system will automatically form an ACL for you when you call SetEntriesInAcl. This involves mapping names to SIDs, making incremental changes to existing ACLs, and making sure ACEs are ordered correctly in DACLs. Going the other way, GetExplicitEntriesFromAcl maps SIDs back to names.


On Windows NT 4, these two APIs are virtually unusable. On Windows 2000 some of the bugs are fixed, but I still cannot recommend their use in systems that you care about. The most hideous bug is that SetEntriesInAcl discards all inheritable ACEs completely. This is clearly unacceptable when working with ACLs in any hierarchical system: the file system, the registry, window stations, and so on. GetExplicitEntriesFromAcl worked pretty well until it started ignoring generic permissions completely in Service Pack 4 of Windows NT 4.


Regardless of whether the implementation bugs are fixed, these APIs harbor two design problems. The most glaring problem is that because all the name-to-SID (and back) mapping is done behind the scenes, if one of these mapping operations fails, the entire operation fails with no indication of which name failed to be mapped. (You can avoid this in SetEntriesInAcl by always using SIDs in your trustee data structures to begin with; however, GetExplicitEntriesFromAcl always maps SIDs to names – you don't have a choice.) A more subtle problem is that it's unclear how to take an existing ACL and adjust the inheritable permissions in it in a predictable way (assuming you're not using a version of Windows where SetEntriesInAcl simply ignores them anyway).


Now that I've finished ranting, here's my recommendation. If you plan on programming ACLs yourself, you're going to need to use the "low-level" API in MSDN. Don't let the documentation fool you – these APIs are not in any way obsolete. Even though these functions might feel a bit grungy, they are actually very straightforward to use. If you can possibly avoid it, don't write your own user interface for editing ACLs; rather, rely on the built-in security descriptor editor that ships with Windows 2000. For Windows NT 4, this component is installed as a side effect of installing the Security Configuration Editor (this became available as of Service Pack 4). Using this component will usually eliminate most of the ACL manipulation code from your program. For those rare occasions where you do need to manipulate ACLs yourself, here's a modern primer on programming ACLs, specifically DACLs. (Once you know how to manipulate a DACL, working with a SACL is similar.)


First, be aware that an ACL consists of a contiguous buffer of memory that is populated with a header followed by zero or more ACEs. Each ACE is a variable-length data structure (the very last component of each ACE is a SID, which makes even version 2 ACEs variable length). The ACL header is defined as follows:

typedef struct _ACL 
{


BYTE AclRevision;


BYTE Sbzl;         // Should be zero


WORD AclSize;


WORD AceCount;


WORD Sbz2;         // Should be zero 
} ACL;

The revision numbers currently in use are 2 and 4; the latter can be found in the directory service, where object-specific ACEs roost. AclSize indicates the total number of bytes in the ACL, and AceCount indicates the number of ACEs that follow the header. You are required to treat ACLs as opaque, so a function you're likely to use often is GetAclInformation:
typedef enum _ACL_INFORMATION_CLASS   
{


AclRevisionlnformation = 1,


AclSizeInformation 
} ACL_INFORMATION_CLASS;

typedef struct _ACL_SIZE_INFORMATION   
{


DWORD AceCount;


DWORD AclBytesInUse;


DWORD AclBytesFree; 
} ACL_SIZE_INFORMATION;

BOOL GetAclInformation(

PACL Acl,



// in


LPVOID AclInformation,

// out, your buffer


DWORD AclInformationLength,  
// in, buffer size in bytes 

ACL_INFORMATION_CLASS Class);
// in


Once you've asked for AclSizeInformation, it's pretty easy to enumerate the entries in a version 2 ACL. The next function you'll need to know about is GetAce:

BOOL GetAce(


PACL Acl,

// in


DWORD Acelndex,
// in, zero based


LPVOID* Ace);
// out

This function gives you a pointer to the Nth ACE, where N is the zero-based index passed via Acelndex. All ACEs have a few fields in common that are represented by the ace _header structure:

typedef struct _ACE_HEADER 
{


BYTE AceType;


BYTE AceFlags;


WORD AceSize; 
} ACE_HEADER;

The ACE size in bytes is provided via AceSize, the inheritance flags are housed in AceFlags, and the actual type of ACE is housed in AceType:
#define ACCESS_ALLOWED_ACE_TYPE
(0x0)

#define ACCESS_DENIED_ACE_TYPE
(0x1)

#define SYSTEM_AUDIT_ACE_TYPE

(0x2)

Note that positive and negative entries in the DACL are represented by two distinct types of ACEs (physically these ACEs look exactly the same, however). Things are different in the SACL, however, because it is possible for a single ACE to represent both a success and failure audit. In the SACL, two special flags (non-inheritance related) indicate whether to audit success, failure, or both:

#define SUCCESSFUL_ACCESS_ACE_FLAG
(0x40)
#define FAILED_ACCESS_ACE_FLAG
(0x80)

Here's what an ACE in a version 2 DACL looks like:

typedef struct _ACCESS_ALLOWED_ACE   
{


ACE_HEADER Header;


ACCESS_MASK Mask;


DWORD SidStart; 
} ACCESS_ALLOWED_ACE;


There is a similar declaration of type access_denied_ace, but it looks exactly the same. As you can see, this structure simply adds a 32-bit access mask and a variable-length SID to the ace_header. Because it's impossible to declare a variable-length field in a C structure, SidStart represents a placeholder that contains the first 32 bits of the SID; take its address to get a pointer to the SID in the ACE. The following code pulls all these ideas together, enumerating the contents of a version 2 DACL:

void _dumpDacl(ACL* pdacl) 
{ 

ACL_SIZE_INFORMATION sizelnfo; 

GetAclInformation(pdacl, &sizelnfo, sizeof sizeInfo, AclSizeInformation);

for (DWORD i = 0; i < sizeInfo.AceCount; ++i) 

{ 


// allow/deny ACEs have exactly the same shape 


ACCESS_ALLOWED_ACE* pace; 


GetAce(pdacl, i, (void**)&pace);



const wchar_t* pszGrantOrDeny; 


switch (pace->Header.AceType) 


{ 


case ACCESS_ALLOWED_ACE_TYPE:




pszGrantOrDeny = L"grant";




break;



case ACCESS_DENIED_ACE_TYPE: 



pszGrantOrDeny = L"deny"; 



break;



default:




pszGrantOrDeny = L"<<unexpected ace type>>";




break; 


} 


wprintf(L"%s 0x%08X (inh: %X) to ", pszGrantOrDeny, 





pace->Mask, pace->Header.AceFlags);



_printSid(&pace->SidStart); 


wprintf(L"\n"); 

} 
}

If you're creating a DACL from scratch, just allocate enough memory to hold the number of ACEs you plan on using. Don't worry about getting the amount of memory exactly right, because if you're planning on calling Set(Named)SecurityInfo or CreatePrivateObjectSecurity(Ex) to apply your DACL to a security descriptor, the system won't use your DACL anyway; rather, it'll make a new one using your DACL as a starting point.

const DWORD _maxSidSize = GetSidLengthRequired(SID_MAX_SUB_AUTHORITIES); 
const DWORD _maxVersion2AceSize = sizeof(ACCESS_ALLOWED_ACE) 
                        - sizeof(DWORD) + _maxSidSize;

Given this, you can simply allocate some memory (using your favorite memory allocator) and start adding ACEs.

Before you add your first ACE, though, you'll need to initialize the ACL header:

BOOL InitializeAcl(


PACL Acl,         
// out


DWORD AclLength,   
// in, size of memory block in bytes


DWORD AclRevision);
// in
To add each ACE, use one of the following two functions:
BOOL AddAccessAllowedAceEx(


PACL Acl,


// in, out


DWORD AceRevision, 
// in

DWORD AceFlags, 

// in

DWORD AccessMask, 
// in

PSID Sid);


// in

BOOL AddAccessDeniedAceEx(


PACL Acl,


// in, out


DWORD AceRevision, 
// in

DWORD AceFlags, 

// in

DWORD AccessMask, 
// in

PSID Sid);


// in

These two functions (introduced in Windows 2000) give you complete control over the new ACE; their older cousins (the non-Ex versions) omit the AceFlags mask, and thus you cannot control inheritance flags without writing some extra code. The parameters should be self-explanatory. AceRevision should be Acl_revision (or acl_revision_ds if you're working with directory service DACLs). Fortunately it's quite easy to implement these newer functions in terms of their older cousins if your code needs to be portable to Windows NT 4. For example:

#if _WIN32_WINNT < 0x500
BOOL AddAccessAllowedAceEx(PACL pAcl, DWORD dwAceRevision, DWORD AceFlags,


DWORD AccessMask, PSID pSid) 
{ 

if ( !AddAccessAllowedAce(pAcl, dwAceRevision, AccessMask, pSid))


return FALSE;

ACL_SIZE_INFORMATION info; 

if (!GetAclInformation(pAcl, &info, sizeof info, AclSizeInformation)) 


return FALSE; 

ACE_HEADER* pace = 0; 

if (!GetAce(pAcl, info.AceCount - 1, (void**)&pace))



return FALSE;

pace->AceFlags = (BYTE)AceFlags; 

return TRUE; 
} 
#endif
Here's an example that creates a DACL from scratch:

// grant GENERIC_ALL to Everyone

// except network logon sessions,

// making these ACEs inheritable  
SID sidEveryone = {SID_REVISION, 1, 



SECURITY_WORLD_SID_AUTHORITY, SECURITY_WORLD_RID};

SID sidNetwork  = {SID_REVISION, 1, 


SECURITY_NT_AUTHORITY, SECURITY_NETWORK_RID};
DWORD cb = 2 * __maxVersion2AceSize;

ACL* pdacl = (ACL*)LocalAlloc(GPTR, cb);

InitializeAcl(pdacl, cb, ACL_REVISION);
DWORD grfInherit = OBJECT_INHERIT_ACE | CONTAINER_INHERIT_ACE; 
AddAccessDeniedAceEx(pdacl, ACL_REVISION, grfInherit, 


GENERIC_ALL, &sidNetwork); 
AddAccessAllowedAceEx(pdacl, ACL_REVISION, grfInherit, 


GENERIC_ALL, &sidEveryone);

// call to Set(Named)SecurityInfo or

// CreatePrivateObjectSecurity(Ex) omitted

// now our (overly fat) DACL is no longer needed 
LocalFree(pdacl);

Note in this example how careful I was to place the negative ACE before the positive ACE. This is because even though they are clearly aware of the type of ACE being added, these functions do not make any attempt to maintain the correct order of the DACL on your behalf. AddAccessDeniedAceEx (for instance) simply appends a new ACE to the end of an existing DACL, even though this may create a DACL that is out of order. This means that insertion of new ACEs into existing DACLs becomes nontrivial, because you have to insert them in the correct order.


Considering that you'll never be manually adding an ACE with the inherited_ace flag set – recall that the flow of inherited ACEs is handled by the system via calls to Set(Named)SecurityInfo or CreatePrivateObjectSecurityEx – all the ACEs you'll be adding will be direct ACEs. With this in mind, when adding a negative ACE, insert it as the very first ACE, before any of the existing ACEs. This is where the direct negative ACEs belong. When adding a positive ACE, insert it right before you see any ACEs marked with the inherited_ace flag. If you don't see any ACEs marked this way, just add it to the end. Using these rules will allow you to write code that works with older Windows NT 4-style DACLs (which don't use inherited_ace) as well as modern Windows 2000 ACLs.


With these rules of thumb in mind, I wrote a couple of very simple functions that demonstrate how to safely insert positive and negative ACEs into a DACL.

ACL* _insertAccessAllowedAce(ACL* pdaclOld, DWORD grfMask, 


DWORD grfInherit, PSID psid) 
{ 

ACL_SIZE_INFORMATION si;


GetAclInformation(pdaclOld, &si, sizeof si, AclSizeInformation);


// allocate a DACL with room for one additional ACE 

DWORD cb = si.AclBytesInUse + _maxVersion2AceSize; 

ACL* pdaclNew = (ACL*)LocalAlloc(GPTR, cb);


InitializeAcl(pdaclNew, cb, ACL_REVISION);

//a safe way to add a direct positive ACE is to 

// add it right before the inherited ACEs begin 

bool blnserted = false;

for (DWORD i = 0; i < si.AceCount; ++i) 

{



ACE_HEADER* pace;



GetAce(pdaclOld, i, (void**)&pace); 


if (!bInserted && pace->AceFlags & INHERITED_ACE) 



AddAccessAllowedAceEx(pdaclNew, ACL_REVISION, 





grfInherit, grfMask, psid) 


bInserted = true; 

} 

AddAce(pdaclNew, ACL_REVISION, MAXDWORD, pace, pace->AceSize); 

if (!bInserted)



AddAccessAllowedAceEx(pdaclNew, ACL_REVISION,




grfInherit, grfMask, psid) return pdaclNew; 
}
ACL* _insertAccessDeniedAce(ACL* pdaclOld, DWORD grfMask, 


DWORD grflnherit, PSID psid) 
{


ACL_SIZE_INFORMATION si;


GetAclInformation(pdaclOld, &si, sizeof si, AclSizeInformation);


// allocate a DACL with room for one additional ACE 

DWORD cb = si.AclBytesInUse + _maxVersion2AceSize; 

ACL* pdaclNew = (ACL*)LocalAlloc(GPTR, cb);

InitializeAcl(pdaclNew, cb, ACL_REVISION);

//a safe way to add a direct negative ACE is to 

// add it at the very beginning of the ACL


AddAccessDeniedAceEx(pdaclNew, ACL_REVISION, grfInherit, grfMask, psid); 

for (DWORD i = 0; i < si.AceCount; ++i) 

{ 


ACE_HEADER* pace;



GetAce(pdaclOld, i, (void**)&pace); 


AddAce(pdaclNew, ACL_REVISION, MAXDWORD, pace, pace->AceSize); 

}


return pdaclNew; 
}

Of course, you should add in whatever error checking code makes sense for your project and to use your favorite memory allocator; I chose LocalAlloc in this example to stay consistent with Get(Named)SecurityInfo and friends.


Here's an example that uses these helper functions to add a denied ACE to a fictitious registry key:

// deny GENERIC_ALL to network logon sessions 
SID sidNetwork = {SID_REVISION, 1, 


SECURITY_NT_AUTHORITY, SECURITY_NETWORK_RID};

void* psd; 
ACL* pdaclOld; 
GetNamedSecurityInfo(L"MACHINE\\Software\\Test", SE_REGISTRY_KEY,


DACL_SECURITY_INFORMATION, 0, 0, &pdaclOld, 0, &psd);
ACL* pdaclNew = _insertAccessDeniedAce(pdaclOld, DELETE,

CONTAINER_INHERIT_ACE, &sidNetwork);
SetNamedSecurityInfo(L"MACHINE\\Software\\Test", SE_REGISTRY_KEY, 

DACL_SECURITY_INFORMATION, 0, 0, pdaclNew, 0); 
LocalFree(pdaclNew) ; 
LocalFree(psd);

The bad news here is that ACL programming is pretty hard to get right, but the good news is that the main reason you used to get stuck doing it was in conjunction with a user interface. (Note that in these examples I've been using hardcoded SIDs; in a user interface, you'd also be stuck trying to look up account names over the network while trying to keep your user interface responsive.) The built-in access control editor should help significantly in this regard. (It's very sophisticated; it even performs its name-to-SID mappings on a separate thread to avoid locking up the user interface.) Check my Web site for examples of its use.

A Note on Negative ACEs and Windows NT 4

In the last example, I added a negative ACE to a registry key. This works fine in Windows 2000, but introduces some issues in Windows NT 4. From a security standpoint, things work the way you expect: Network logon sessions are denied access to the registry key. However, if an administrator tries to edit the DACL on that registry key, he or she will be greeted with a very nasty dialog box that indicates that the ACL editor on Windows NT 4 doesn't know how to deal with negative ACEs.
 The administrator will have two choices: either stop editing the DACL immediately, or edit the DACL and have the ACL editor remove every single ACE from that DACL. Neither of these choices is good. If it was your program that added that negative entry, the administrator isn't going to like you much.


The moral of the story is that you should avoid using negative ACEs in Windows NT 4 anywhere an administrator is likely to edit them using the built-in ACL editor. This includes the file system
, registry, network shares, and COM server access and launch permissions. Executive objects (threads, window stations, semaphores, sections, etc.) and services are examples of objects for which the system doesn't provide an ACL editor, so you don't have to worry about this little problem here.


Lots of people have asked me why Microsoft never documented the interface to the Windows NT 4 ACL editor (acledit.dll). If I had to guess, I'd say this particular limitation was one of the motivating factors.

Handles

In a chapter on access control, I thought I'd share some insight that I've had regarding how access control works with handles in Windows. When you call CreateMutex to create a named mutex, the system gives you back a 32-bit handle that you can think of as representing a session to the mutex. If you were the actual creator of the mutex (in other words, you didn't end up opening somebody else's mutex), you'll get back a session that has full access permissions to the mutex (even if you specified a DACL via the SecurityAttributes parameter that denies yourself all access; the creator always gets a valid handle to the mutex, which is reasonable).


I often used to wonder what would happen if you were to call DuplicateHandle to give your handle to some other process (particularly one that was running in a different security context). For that matter, what would happen in a process running as Bob if a thread impersonating Alice opened a handle to a mutex? (Perhaps Alice has been granted access to the mutex, but Bob has not.) What would happen in this case if the thread stopped impersonating Alice and reverted to Bob? Or what if the thread then started impersonating Mary? Would the system track who had originally acquired the resource and complain if somebody else tried to use it?


It turns out that the model is quite simple. When you open up a session to an object, an access check occurs to make sure you're allowed to open the session in the first place, and the system annotates the resulting session (by dereferencing the appropriate entry in the process's handle table) with the access permissions you were granted. (This information is stored in protected kernel memory, so malicious user-mode code cannot adjust these annotations.) From then on, no security checks are performed when you use that session, regardless of what security context it is used from (other than verifying that the session isn't misused; for instance, you can't open a session for read-only access and then try to write using that same session). So Bob, while impersonating Alice, can acquire a mutex that only Alice has access to, and he can later use the handle as Bob, or Mary, or anybody else he can impersonate. (Technically, the security context he's using doesn't really matter, because he's still using a session opened by Alice.) The handle table in a process is not sensitive to security contexts; if you can impersonate someone, you can acquire a resource on his or her behalf and use it in your process (assuming, of course, the security context you impersonate is strong enough to allow you to open executive objects while impersonating; see Chapter 4 for a discussion of impersonation levels).


What about auditing? Well, because audits generally occur only when an object is opened or closed, as long as Alice opens and closes the object, any other principal who uses her session won't be recorded in the audit log; the system doesn't audit each time you use an existing session. "Audit object access" doesn't necessarily mean that the system will audit each usage of a session (which would be expensive and would bloat the audit log).


What happens when you share a mutex by giving it a name? Any thread that opens a handle to the mutex (by calling OpenMutex or CreateMutex) is opening a new session, and so the system performs an access check based on the calling thread's security context.


Correspondingly, what happens if you share a mutex by calling DuplicateHandle, or via handle inheritance to a child process? You are probably already familiar with DuplicateHandle
, but I'll repeat its signature here so I can refer to it when necessary:

BOOL DuplicateHandle(


HANDLE SourceProcessHandle,
// in


HANDLE SourceHandle,

// in


HANDLE TargetProcessHandle,
// in


LPHANDLE TargetHandle,

// out


DWORD DesiredAccess,

// in


BOOL InheritHandle,

// in


DWORD Options);


// in

From a security perspective, calling DuplicateHandle or using handle inheritance to give someone else a reference to an object is very different from having that person open the object by name. From a security perspective, you are giving someone else access to a session that you've already established. No additional access checks will be performed, with one exception. If you call DuplicateHandle and ask for at least one permission that you didn't have in your original session, the system detects this and does one of two things: it either blindly fails the call with error_access_denied (the file system and registry work this way), or it performs an access check using the security context of the target process (represented via TargetProcessHandle) to decide whether to grant or deny the request. 


Recall the definition of the security_attributes structure:
struct SECURITY_ATTRIBUTES 
{


DWORD nLength,       
// sizeof SECURITY_ATTRIBUTES

LPVOID psd,


// optional pointer to SD


BOOL blnheritHandle 
// is handle inheritable?

};

I used to wonder why bInheritHandle was a member of this structure, but when you consider that you will be giving away your handle to the child process with no access checks performed, it's pretty clear that this parameter is security related. Even if the child will run in a different logon session (via CreateProcessAsUser), that open session will still be shared with the child process without any further access checks.


In summary, if you care about security, treat handles as sessions to objects and be aware that access checks and audits are normally performed only upon opening the session. Handle inheritance and DuplicateHandle are ways of giving your session away to someone else without any access checks being performed. If you're interested in more information on this topic, see Brown (2000a).

Summary

· The 32-bit access mask includes three types of permissions: specific, standard, and generic. Specific permissions are defined for each class of object individually. Standard permissions have the same values for all objects in order to provide a limited amount of polymorphism.

· Generic permissions map to standard and specific permissions and allow an additional level of polymorphism across different classes of objects. The default DACL in your token is a great example of the use of generic permissions.

· Security descriptors are associated with objects, and contain an owner, primary group, DACL, and SACL.

· The owner is always implicitly granted read_control and write_dac, regardless of what the DACL says.

· A trustee is either a principal or a group listed in an ACL.

· The DACL says which trustees are allowed to touch the object in certain ways; it is discretionary, which means that access policy is determined at the owner's discretion.

· The SACL is nondiscretionary. It can be viewed or manipulated only from security contexts that have SeSecurityPrivilege enabled (Administrators are granted this privilege by default).

· When creating new objects, use the security_attributes structure to customize various aspects (typically the DACL) of the new object's security descriptor. If you find yourself doing this a lot, consider changing the default DACL in your token to automate this.

· Security descriptors can be absolute or self-relative. The former is typically used to provide information to the operating system, and the latter is typically used when retrieving information from the operating system.

· Each access check takes as input three things: a token, a security descriptor, and a requested access mask. The AccessCheck API sums up this model quite nicely.

· During an access check, the DACL is traversed from top to bottom, and as permissions are granted, their corresponding bits are latched in an accumulator until either all requested access permission bits have been granted or any one of them has been denied. Thus the order of the DACL is significant.

· Negative ACEs in a DACL take precedence over positive ACEs, and are therefore listed first. If the Windows 2000 inheritance scheme is in use, direct (noninherited) ACEs are listed first (negative followed by positive), followed by inherited ACEs (negative followed by positive). This allows a direct positive ACE to override an inherited negative ACE.

· ACL inheritance in Windows NT 4 leads to chaos in nontrivial systems because inheritance is only honored at object creation time and the system provides no reasonable means for maintaining consistency.

· ACL inheritance in Windows 2000 tracks each inherited ACE in an ACL, which allows them to be resynchronized whenever a change occurs. This keeps hierarchical systems consistent, while providing away to block the flow at distinguished nodes in the hierarchy.

· You can use security descriptors in your own private objects, and you can also leverage inheritance if you have a hierarchical system. Use CreatePrivateObjectSecurity if you buy into the Windows

· NT 4 model of ACL inheritance; use CreatePrivateObjectSecurityEx if you buy into the Windows 2000 model. Call AccessCheck as appropriate to verify access.

· When constructing or parsing ACLs, consider using the "low-level" APIs, which are robust and flexible, as opposed to the "high-level" APIs, which have traditionally been horribly bug-ridden.

· Avoid programming ACLs if you can. Prefer to leverage the Windows 2000 access control editor user interface, which deals with ACL ordering automatically.

· Be aware that handles to operating system objects behave like sessions. Once you open a session, no further access checks are performed, so don't give away your sessions willy-nilly.

� Via WaitForMultipleObjects and friends.

� As a concrete example, in Windows 2000, while running as a member of the Domain Admins group (and also the local Administrators alias) on a domain controller, I created a new file on an NTFS partition, a new registry key, and a new object (a user) in the Active Directory. For the file and registry key, the system assigned ownership to the Administrators alias, whereas for the direc�tory object, the system assigned ownership to Domain Admins.

� I use virtually as a weasel word for two reasons: First, it would be impossible for me to verify that this always works; second, I've actually found a case where it doesn't work. I failed to take ownership of the Winlogon desktop (both in Windows NT 4 and Windows 2000). This particular limitation appears to be hardwired into the system.

� See Kaufman (1995).

� I'm purposely deferring the details of how a parent's DACL influences its children until the dis�cussion of ACL inheritance later in the chapter

� ACL inheritance has not yet been discussed, but in a hierarchy of objects, typically the parent object will completely determine the DACL and SACL of the child if you don't specify one explic�itly. Still, the owner and primary group will be taken from your token by default.

� Granting access to SYSTEM is purely a convenience; sophisticated code running in the System logon session can ultimately construct a token with any authorization attributes needed to access any objects on the machine. That's what it means to be part of the TCB.

� CoInitializeSecurity is a notable exception – it assumes the caller will pass an absolute security descriptor. Whoops.

� I chose a mutex for simplicity – you could use this code to create any executive object, file, or registry key, as long as the create function takes an lpsecurity_attributes parameter.

� Watch out for this if you are writing code to retrieve the DACL from an object! Many program�mers forget that a NULL DACL is a perfectly valid state in a security descriptor, and functions such as GetSecurityInfo may very well give you a null pointer for the DACL, indicating that the object has a NULL access control policy (thus, everyone has all access).

� Recall that another way to restrict use of authorization attributes is to use group SIDs marked with se_group_use_for_deny_only. In this case, the algorithm simply ignores any positive ACEs that apply to group SIDs marked deny-only.

� If I had to guess, I'd say that a lot of the confusion over how ACLs work comes from the way the old Windows NT 4 ACL editor (acledit.dll) used to display DACLs. Entries were listed in alphabetical order, without regard to whether they were positive or negative. The Windows 2000 ACL editor (at least in Advanced mode) shows the ACEs in their correct order.

� A friend of mine at DevelopMentor once sent me a token dump from a company at which he was consulting. The token had 73 groups and aliases packed into it. This also happened to be one of the few companies where the software development team members were not allowed to be members of the Administrators alias on their own machines.

� Hey, I'm not exempt from this either. As a professional software developer, many of my own pro�grams suffered from this flaw before I came to grips with security.

� Although putting it in the SACL causes the system to audit the usage of the privilege.

� This code uses the OpenThread function introduced in Windows 2000, but DuplicateHandle works just as well in earlier versions of Windows; I just haven't had a chance to discuss how DuplicateHandle works security-wise, so I've refrained from using it here.

� A SACL will not necessarily be present, but this is not a problem.

� See Brown (1999a).

� Windows 2000 added a fifth inheritance flag that I'd prefer to leave shrouded in mystery until I discuss the new inheritance model.

� When defining the generic_mapping structure for any class of object, be careful to always be brutally honest when specifying the mask for GenericAll. When you call CreatePrivateObjectSecurity(Ex), any ACEs that apply directly to the object (in other words, ACEs that aren't flagged with inherit_only_ace) will be "strained" through GenericAll (a bitwise AND is performed) so that you can't accidentally apply permissions that don't make sense for an object. If, for instance, you completely ignore generic permissions and specify a GENERIC_MAPPING of {0, 0, 0, 0}, CreatePrivateObjectSecurity Will create ACLs full of ACEs that have access masks with 0x00000000 in them. Not very useful!

� When CreatorDescriptor is NULL and the parent has no inheritable entries to contribute, CreatePrivateObjectSecurity turns to the default DACL in the token as opposed to sim�ply creating an empty DACL for the object.

� In case you were wondering, version 3 appears to have been skipped for some unknown reason. My guess is that it had something to do with the (now obsolete) security model introduced during the early Windows NT 5.0 beta.

� Without having seen the source code for Active Directory, it's impossible to say whether it has some alternate scheme for implementing ACL inheritance. Because inheritable ACEs are now flowed automatically, technically a given implementation doesn't need to have each node in the hierarchy contain inheritable entries all the time. It's possible to generate those entries on an as-needed basis (a simple speed versus space trade-off), but this would be pretty tricky to implement. In any case, there is no escaping the extra overhead introduced by this auto-synchronize model. Object-specific ACEs only exacerbate the overhead. Don't get me wrong – I wish I'd had auto-synchronizing ACLs much earlier in the history of Windows NT, but before you decide to start using object-specific ACEs in your own private ACLs, beware the complexity.

� Note that I'm specifically not addressing directory service ACLs (version 4), which use an even more complex model for ACL ordering.

� My understanding is that it actually can deal with one very special type of negative ACE: a neg�ative ACE that denies generic_all.

� Technically, if the Security Configuration Editor has been installed, the file system won't have this problem, because it'll be using the Windows 2000 ACL editor

� See Richter (1999a).
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