Chapter 8 – The File Server

What's a chapter like this doing in a book on security for programmers? Well, very often the file server is used as an important component in a distributed system. Often, it's taken for granted as well – until the problems start to rear their ugly heads . . .
Access is denied.

Logon failure: bad user name or password,
The credentials supplied conflict with an existing set of credentials.

One reason these problems often seem so mysterious is that the documentation doesn't lay out a conceptual model of how security in the file server really works. The goal of this chapter is to remedy that. Having a solid conceptual model will not only make you more comfortable developing distributed systems using the file server, but will also help you on a day-to-day basis as you're using Windows to get work done.

LAN Manager

The Windows file server is built on top of a Microsoft proprietary wire protocol known as Server Message Block (SMB). In December 1997, Microsoft pub​lished an Internet draft proposal with the Internet Engineering Task Force (IETF) for a protocol named CIFS (Common Internet File System) that was basically a subset of SMB that was Internet friendly
, so you'll often hear the SMB protocol referred to as CIFS. This text will stick with the term SMB.

The SMB protocol has a server-side component that listens for incoming requests (this is packaged in the Server service), and a client-side component that issues those requests (this is packaged in the Workstation service).

To avoid confusion and too much tongue tangling, I'm going to define some terms to be used in this chapter:
· lmserver The file server that listens for SMB requests

· lmclient The client-side daemon that sends SMB messages to the server on the client's behalf

· lmsession An SMB session, as opposed to any other type of sessions that I'll talk about (such as a logon session)

The "lm" prefix stands for LAN Manager, the root technology that resulted in the SMB protocol that is used in Windows for Workgroups, Windows NT, and Windows 2000. When you program against these components, you include a header file called lm.h, so the prefix seemed pretty natural here.

LAN Manager Sessions

The first thing you need to know about the file server is that it is session ori​ented. A client that wishes to read or write a file must first establish a session with the file server. The system sets up implicit sessions on your behalf so often that you may not even be aware that they are there. This is desirable for an end user, but as a distributed systems programmer you should be keenly aware of how sessions affect your designs.

On each machine running the Server service, lmserver maintains a list of open SMB sessions. On each client running the Workstation service, lmclient also maintains a list of open SMB sessions (see Figure 8.1). An authentication handshake is required to open a session. While a session is open, however, no further authentication is performed, unless SMB signing is negotiated (this is covered later).

[image: image1.jpg]System logon session

System logon session

Imclient Imserver
BobsMachine AlicesMachine, idle: 5 minutes]
AmysMachine
AlicesMachine BobsMachine

System logon session

System logon session

Imserver
Imclient AlicesMachine, idle: 5 minutes|
[AmysMachine P TedsMachine, idle: 0 minutes
TedsMachine AmysMachine

Figure 8.1. LAN Manager sessions

Think about what sessions meant before Windows 2000, when the de facto authentication protocol was NTLM. If the file server were not session ori​ented, each time Alice (on AlicesMachine) opened a file on BobsMachine the system would have to perform an authentication handshake. This isn't terribly expensive if you only consider the extra network authentication tokens passed between Alice and BobsMachine, but if Alice is using a centralized authority the overhead gets tremendously high: Alice's authority must be contacted to participate in NTLM pass-through authentication for each request. And if Alice and BobsMachine aren't in the same domain, it's even worse (see Chapter 7 for the details). Thus, authenticating once and maintaining an open session makes the system seem more responsive to Alice, and it also helps eliminate lots of network requests for domain controllers. (The comparison with Kerberos, which relies on client-side caching of tickets, is interesting because Kerberos reduces the need for server-side sessions somewhat, although some sort of session would still be necessary if only to allow files to remain open between requests.)

Remember what happens at the end of a client/server authentication hand​shake in Windows. The server-side SSP talks to the Local Security Authority and establishes a network logon session and a token for the client. The server can then ask the SSP for the client's token in order to peruse the client's identity and authorization attributes. In the case of lmserver, the thread handling the request will always impersonate the client while carrying out the request; this is the canonical example of the "pass the buck" access control strategy de​scribed in Chapter 3, and it works well in this case because lmserver provides (among other things) a network front end to an already secure file system.

Because lmserver needs to be able to impersonate the client at each request, but the authentication handshake only occurs when the lmsession is first established, clearly the lmsession must hold a reference to the client's net​work logon session (in SSPI terminology, you'd say that the lmsession holds a security context handle). This way, the lmserver thread only has to call ImpersonateSecurityContext whenever it needs to execute a new request from the client.

So how long does each lmsession remain open? This isn't clearly docu​mented, but there are a number of observations that I've made while studying both Windows 2000 and Windows NT 4. It appears as though lmserver occa​sionally makes a sweep of open sessions and closes those sessions that have no files (or other devices) open and that have been idle for a certain amount of time.

One reason it's important to close these sessions occasionally is to allow a refresh of the client's security context. As long as an lmsession is open, lmserver receives no new information about the client's current authorization attributes.

The network logon session being held open by the lmsession becomes stale in this case. This can become a problem if a particular lmsession is rarely idle, because the lmserver won't be able to automatically time out that session. What does all this mean? It means that if you are added or removed from a group this change won't have any effect on an open lmsession.

If this ever becomes a problem, one workaround is to force the session to close by calling NetSessionDel:
NET_API_STATUS NetSessionDel(

LPWSTR servername,

// in, optional

LPWSTR UncClientName,
// in, optional

LPWSTR username);

// in, optional

servername is the Universal Naming Convention (UNC name
) of the machine whose lmserver you want to contact. You can choose up to two criteria for which sessions should be closed: You can filter based on the client host address (UncClientName) or based on the client principal {username). An undocumented feature (bug?) in this function prevents you from calling it without specifying at least one of these filters (the function returns error_invalid_parameter in this case).

The danger in calling the NetSessionDel function is that any open files (or other resources such as named pipes) will be forced closed and data may be lost; to be safe, therefore, only do this when you know your sessions are idle. Because of this danger, the caller must be a member of the Administrators or Account Operators alias on the server machine, or the call will fail. Interestingly enough, because the LAN Manager API is implemented using RPC over SMB (named pipes), when you make the call to NetSessionDel you are actually using an lmsession to make the RPC call, and if you've indicated that you want to close your own session, you'll close the session you're using to make the NetSessionDel call in the first place! The function will indeed operate as doc​umented, but you'll get an RPC error when the function returns, which should​n't surprise you.

One safe thing you can do with sessions is enumerate them:
NET_API_STATUS NetSessionEnum(

LPWSTR servername,

// in, optional

LPWSTR UncClientName,

// in, optional

LPWSTR username,

// in, optional

DWORD level,

// in

LPBYTE* bufptr,

// out

DWORD prefmaxlen,

// in

LPDWORD entriesread,

// out

LPDWORD totalentries,

// out

LPDWORD resume_handle);

// out, optional

The first three parameters are the same as those to NetSessionDel, except that you can pass NULL for all of them and this function actually works as advertised. Depending on the level of information you request, you don't nec​essarily need any particular authorization attributes at all. Here's an example that enumerates all lmsessions on a specified server machine (this example doesn't require any particular authorization attributes):
void _enumAllSessions(wchar_t* pszServer)
{

SESSION_INFO_10* prglnfo;

DWORD cRead, cTotal;

NET_API_STATUS s;

s = NetSessionEnum(pszServer, 0, 0,

10, (BYTE**)&prgInfo, MAX_PREFERRED_LENGTH,

&cRead, fccTotal, 0);

if (s) _err(L"NetSessionEnum", s);

for (DWORD i = 0; i < cRead; ++i)

{

SESSION_INFO_10& info = prglnfo[i];

wprintf(L"Client Host: %s\n", info.sesi10_cname);

wprintf(L"Client Principal: %s\n",info.sesi10_username);

wprintf(L"Session started %d sec ago\n", info.sesi10_time);

wprintf(L"Session has been idle for %d sec\n\n",

 info.sesi10_idle_time);

}

// standard cleanup for LAN Manager APIs

NetApiBufferFree(prglnfo);
}

Windows 2000 and Windows NT both provide user interfaces by which you can view (and manually close) individual sessions. In Windows 2000, go to the Computer Management snap-in
 and drill down as follows: System Tools, Shared Folders, Sessions. This shows the lmsessions that the local computer is serving up. To get the same view on a remote computer, run MMC directly (from the Start menu, run mmc.exe and add the Computer Management snap-in, at which point the system will allow you to choose which computer you'd like to manage). In Windows NT, you can get virtually the same view by going to the Control Panel applet named Server and pressing the button labeled Users; by using the Server Manager tool, you can connect to remote machines as well. Note that whenever you are looking at a remote machine's lmsessions, you'll always see the one that the system used to make the NetSessionEnum call in the first place.

Clients and Sessions

While writing this chapter, I came across some documentation in the recently released Windows 2000 platform SDK that really pointed to the need for this chapter:

A session is a link between a workstation and a server. A session is established the first time a workstation makes a connection to a shared resource on the server. Until the session ends, all further connections between the workstation and the server are part of the same session.

This does a pretty good job of describing how lmsessions work, but it does the reader a terrible disservice by making it sound as though multiple simultaneous lmsessions cannot exist between a given client machine and a given server machine. This is in fact not the case at all, and we'd suffer horribly if it were.

Imagine that a service on AlicesMachine is designated to run as some dae​mon principal – let's call it Quux. If code running inside this service were to call CreateFile to access a file on BobsMachine, the lmclient on AlicesMachine would silently open an authenticated lmsession for Quux with BobsMachine. Now, just to make sure that this lmsession stays open, let's say that Quux holds this remote file open all day long. What happens when Alice logs in to AlicesMachine and executes the following from a command prompt?
copy \\BobsMachine\SomeShare\AlicesFile.txt

If the previously quoted description were true, the lmserver on BobsMachine would use Quux's security context to open AlicesFile.txt. This is clearly wrong; the system should have authenticated Alice and should be using Alice's security context to access the file. Here's a more accurate description:

An lmsession is a link between a client's logon session and a server. An lmsession is established the first time code running in a client's logon session makes a connection to a shared resource on the server. Until the lmsession ends, all further connections between the client's logon session and the server are part of the same lmsession.

Because Quux is running in a private daemon logon session, it'll have its own private lmsession to BobsMachine. Alice will also have her own private lmses​sion to BobsMachine. These are completely independent and coexist peacefully. Even if a service was running as Alice (unlikely, but it drives the point home), and Alice was simultaneously logged on as an interactive user, the service has its own private logon session and thus will have its own lmsession to BobsMachine, independent of what Alice is doing in her interactive logon ses​sion. Any code running in Alice's logon session that contacts the lmserver on BobsMachine will use Alice's lmsession. Any code running in the service's logon session that does the same will use the service's private lmsession.

I remember once seeing a particularly effective diagram of how a TCP/IP association works.
 Each TCP association is a four-tuple (see Figure 8.2). The server listens on a particular host address and port, and many clients can con​nect from various host addresses simultaneously. In fact, a single server listen​ing on a single port to a single client host can experience multiple simultaneous connections to that client host, because each connection can come from a dif​ferent port on the client.

[image: image2.jpg]Client

Server

host_addr port

host_addr | port

Figure 8.2 TCP/IP associations
[image: image3.jpg]Client

Server

host_addr | logon luid

host_name

Figure 8.3 LAN Manager associations

You can think of lmsessions in a similar way. The association on the client side consists of the client's host address coupled with the client's logon session LUID (think of this as the port). The server side consists of just the server's address because there is only a single lmserver that does all the listening (as opposed to raw TCP, where many servers might be listening on different ports). Figure 8.3 shows this relationship.

Now that it's been established that each logon session on a client machine can have its own private lmsession on a given server, here's where things start to get interesting. When an lmsession is established between a logon session for Alice and a machine called BobsMachine, whose credentials do you think are used to authenticate that session? In other words, when an lmserver thread on BobsMachine impersonates the security context associated with this lmses​sion, whose identity does it take on? The obvious answer is that it takes on Alice's identity. But it turns out that this is just the default behavior. Alice can explicitly control the credentials she uses if she desires. This can be quite pow​erful, as you'll see.

Use Records

If Alice wants more control over her session with BobsMachine, she can estab​lish an explicit use record
 with her lmclient. If you've ever mapped a drive letter, you've established a use record as a byproduct of having redirected a local device.
 A use record consists of a remote resource and (optionally) a set of credentials.

You can add a use record interactively from the command line
:

net use \\BobsMachine /u:user@domain.com *
Type the password for \\BobsMachine:

This example specifically provides an alternate set of credentials to make things interesting. The asterisk at the end of the command isn't a typo; this is how you indicate to the net.exe utility that you'd like it to prompt you for a password. Although technically you can establish several use records to BobsMachine, each indicating a different share, pipe, or printer, remember that only one lmsession can ever be established between your logon session and that remote machine at a given moment in time.
 Thus, unless you're mapping drive let​ters it's pretty pointless to do the following:

net use \\BobsMachine\ShareOne /u:user@domain.com *
net use \\BobsMachine\ShareTwo /u:user@domain.com *
net use \\BobsMachine\ShareThree /u:user@domain.com *
This is redundant. In fact, if you were to try to do this instead:
net use \\BobsMachine\ShareOne /u:jose@domain.com *
net use \\BobsMachine\ShareTwo /u:ranjiv@domain.com *
net use \\BobsMachine\ShareThree /u:sally@domain.com *
you'd find that the second and third lines would fail mysteriously with the error "The credentials supplied conflict with an existing set of credentials." The lmclient component is trying to tell you that you'll only ever be able to establish a single lmsession from your current logon session to BobsMachine, and thus you must pick a single set of credentials and stick with them. So assuming you avoid the redundancy and type
net use \\BobsMachine /u:user@domain.com *
(followed by the password when prompted), you've actually done two things. First and foremost, you've established a use record with your local lmclient dae​mon, which will remember the record for the duration of your logon session. (When I say it remembers, I mean it remembers that you want all SMB traffic originating from your logon session and directed at BobsMachine to use the cre​dentials you've specified.) Second, you've primed the connection by actually establishing a live lmsession (and authenticating; so if you accidentally typed the wrong password, you'll find out right away). If you were to now type

net use

you'd see output that looks something like this:

Status
Local

Remote

Network

OK

\\BobsMachine\IPC$
Microsoft...

Note that net.exe takes \\BobsMachine as shorthand for the interprocess communication (IPC$ pipe that SMB uses as a bootstrap). This is just a detail. The important thing to understand is that all SMB traffic to a given server from a given client-side logon session will use the same lmsession.

The Status field (ok) currently indicates that as far as the lmclient daemon knows, there is in fact a live lmsession established between your logon session and BobsMachine. If you were to leave the lmsession idle for 20 minutes or so and run net use again, you'd see this indicator change to Disconnected, which indicates that the lmsession has timed out and closed. No problem, though: If you try to talk to BobsMachine over SMB again (from the same logon session), the lmclient daemon will use the credentials you specified earlier to establish another authenticated lmsession. Another invocation of net use will show ok, because you once again have a live session. I'm trying to make it painfully obvious that the lmsession can come and go independently of the client-side use record, which always sticks around (at least until the client ter​minates his or her logon session or removes the use record explicitly).

Here's another way of adding a use record:

net use \\BobsMachine

This establishes a use record to BobsMachine using a default set of credentials (this will be taken from my logon session unless I've already established one or more use records with BobsMachine; in the latter case, lmclient will use what​ever credentials were specified in the earlier use records).

Let's start fresh once again. Say Alice establishes her first use record to BobsMachine:

net use \\BobsMachine

Imagine that later in the day (from her same logon session) she wants to use an alternate set of credentials to talk to BobsMachine. She must first delete any existing use records to BobsMachine before adding a new one using different credentials (this avoids the "conflicting credentials" error that can be so painful):
net use \\BobsMachine /d

net use \\BobsMachine /u:user@domain.com *
How Can I Do This Programmatically?

If you are wondering why I'm showing you how to use net.exe, a LAN Manager utility, it's because it's the easiest way for me to explain how lmsessions and use records work, and you can interactively follow along on your own machine.
 (Surprisingly enough, you don't even need a network: You can use lmclient and lmserver on the same machine in the various ways I've been describing.) Once you understand how the net use command works, you'll find that the programmatic API is similar:
#include <lm.h>

#pragma comment(lib, "netapi32.lib")

NET_API_STATUS NetUseAdd(

LPWSTR UncServerName,
// reserved, must be 0

DWORD level,

// in

LPBYTE buf,

// in

LPDWORD ParmError);
// out

typedef struct _USE_INFO_2

{

LPWSTR ui2_local;

// optional

PWSTR ui2_remote;

LPWSTR ui2_password;
// optional

WORD ui2_status;

// unused for NetUseAdd

WORD ui2_asg_type;

DWORD ui2_refcount;
// unused for NetUseAdd

DWORD ui2_usecount;
// unused for NetUseAdd

LPWSTR ui2_username;
// optional

LPWSTR ui2_domainname;
// optional
} USE_INFO_2;

Remember that a use record is established between a client-side logon ses​sion and a server machine. The logon session is discovered implicitly; it's the logon session of the thread that calls NetUseAdd. If you'd like to specify alter​nate credentials (which is the primary reason you'd call this function in the first place), you'd specify info level 2 and fill out a corresponding use_info_2 struc​ture. In this structure, you'd need to set ui2_remote to a UNC path to the tar​get resource; ui2_domainname, ui2_username, and ui2_password to the alternate credentials you'd like to use; and ui2_asg_type to use_wildcard (you don't need to indicate the type of resource when calling NetUseAdd):

void _establishUseRecord(wchar_t* pszResource, wchar_t* pszAuthority,

wchar_t* pszPrincipal, wchar_t* pszPassword)
{

USE_INFO_2 ui2;

ZeroMemory(&ui2, sizeof ui2);

// NetUseAdd obfuscates and then rehydrates the

// data that ui2_password points to for some reason,

// so be sure to pass a writable pointer!

wchar_t szPassword[256];

lstrcpy(szPassword, pszPassword);

ui2.ui2_remote = pszResource;

ui2.ui2_domainname = pszAuthority;

ui2.ui2_username = pszPrincipal;

ui2.ui2_password = szPassword;

ui2.ui2_asg_type = USE_WILDCARD;

DWORD nParmErr;

NET_API_STATUS s = NetUseAdd(0, 2, (BYTE*)&ui2, &nParmErr);

if (s) _err(L"NetUseAdd" , s);
}
Here's a usage example:

_establishUseRecord(L"\\\\BobsMachine\\IPC$", L"Foo",

L"Alice", L"heffalump");

Note that pszResource must indicate an SMB resource, not just a machine name, net.exe conveniently appends \ipc$ if you just provide a machine name; this is what I do by convention as well in my own programs. Remember, you'll only have a single lmsession from your logon session to the target machine no matter which resource (file share, printer, or pipe) you choose.

Pay attention to the comment in the previous code above: For some reason, NetUseAdd will temporarily obfuscate the password in place, so if you pass a pointer to a hardcoded password string, you'll get an access violation (if you're lucky, it might even happen before you ship your product). The previous code provides a workaround (when experimenting with security, I'll often hardcode passwords), but you could almost look at this as an undocumented feature. If you're hardcoding cleartext passwords into production software, this access vio​lation isn't the worst of your problems! Generally you'll get credentials from humans (interactively) or from a password stash (the Windows password stash is discussed in the appendix).

You can programmatically enumerate all the use records for a logon session by calling NetuseEnum (the logon session is naturally determined by the secu​rity context of the thread that makes the call):
#include <lm.h>
#pragma comment(lib, "netapi32.lib")

NET_API_STATUS NetUseEnum(

LPWSTR UncServerName,

// reserved, must be 0

DWORD Level,

// in

LPBYTE BufPtr,

// out

DWORD PreferedMaximumSize,
// in

LPDWORD EntriesRead,

// out

LPDWORD TotalEntries,

// out

LPDWORD ResumeHandle);

// out, optional

Here's an example that prints a bit more information than net.exe does; this code displays the client credentials stored in the record (sans the password; NetUseEnum doesn't give you that).
void _enumUseRecords()
{

USE_INFO_2 * prgui;

DWORD cRead, cTotal;

NET_API_STATUS s;

s = NetUseEnum(0, 2, (BYTE**)&prgui, MAX_PREFERRED_LENGTH,

&cRead, &cTotal, 0);

if (s) _err(L"NetUseEnum", s);

for (DWORD i = 0; i < cRead; ++i)

{

USE_INFO_2& ui = prgui[i];

wprintf(L"Resource: %s\n", ui.ui2_remote) ;

wprintf(L"Local Mapping: %s\n", ui.ui2_local) ;

wprintf(L"Status: %d\n", ui.ui2_status) ;

wprintf(L"Type: %d\n", ui.ui2_asg_type) ;

wprintf(L"Ref Count: %d\n", ui.ui2_usecount) ;

wprintf(L"Authority: %s\n", ui.ui2_domainname) ;

wprintf(L"Principal: %s\n", ui.ui2_username) ;

wprintf(L"\n");

}

NetApiBufferFree(prgui);
}

Note that each use record has a reference count (ui2_usecount). This means that if you call NetUseAdd three times for the same resource, you have to call NetUseDel three times. To avoid this, there is a special flag you can pass to NetUseDel called use_force that will force the reference count to zero and remove the use record.

#include <lm.h>
#pragma comment(lib, "netapi32.lib")
NET_API_STATUS NetUseDel(

LPWSTR UncServerName, // reserved, must be 0

LPWSTR UseName, // in

DWORD ForceCond); // in
#define USE_NOFORCE

0

#define USE_FORCE

1

#define USE_LOTS_OF_FORCE
2

Whoever came up with these constants had a sense of humor. use_noforce decrements the reference count and only removes the record if the reference count drops to zero.
 use_force says to decrement the reference count all the way to zero and remove the use record.

Note that when you remove a use record manually via NetUseDel, if it was the last use record for the target machine and an lmsession is currently active, the system will consider terminating the lmsession. The first two force flags will only terminate the lmsession if there are no resources currently open. The third flag, use_lots_of_force, does what you think it does: It terminates the lmsession with extreme prejudice, regardless of whether any files, printers, or pipes are open. Here's the natural way to remove a use record:
void _removeUseRecord(wchar_t* pszResource)
{

NET_API_STATUS s = NetUseDel(0, pszResource, USE_FORCE);

if (s) _err(L"NetUseDel", s);
}
NULL Sessions

NULL sessions were defined in Chapter 7, and now I'd like to show you a case I where they can be useful. If you have a system where authentication is not needed or desired (perhaps you don't have a centralized authority and you don't want to bother keeping a bunch of local accounts synchronized), you can use NULL sessions to turn off authentication in all SMB traffic. The way to do this is simple: Just establish a use record that specifies empty credentials. In fact, you can even do this via net.exe:
net use \\BobsMachine /u: * Type the password for \\BobsMachine:

Note that I used the /u switch to indicate a user name, but I left the user name blank. (Once again, the asterisk tells net.exe to ask me for a password; if you forget this, it'll try to use the password material cached in your logon session, which isn't what you want.) When net.exe prompts you for a pass​word, just hit Enter to provide a blank password. If you go look at the list of lmsessions on BobsMachine, you'll see an entry with a blank user name. This is a NULL session.

From now on, any SMB traffic from your logon session to BobsMachine will use this NULL session. Given this, consider that each lmserver resource (file share, printer, pipe) has a DACL on it that indicates who should be allowed to use the resource via an lmsession. As long as that DACL grants access to one of the SIDs in the NULL session (Everyone is the classic example), it would seem as though you'd be granted access to that resource. However, very early in the history of Windows NT, administrators were being surprised by this behavior (no big shock there) and weren't aware that at least as far as LAN Manager was concerned, "Everyone" also included anonymous users connect​ing via NULL sessions. So in version 3.5 of Windows NT, some registry settings were added to the configuration for lmserver that provided additional pro​tection from NULL sessions. The most important of these settings was RestrictNullSessionAccess. If you look under the following registry key

HKLM\SYSTEM\CurrentControlSet\Services\LanmanServer\Parameters
you'll likely not see this registry entry at all (it's not there by default). If it's absent, the default setting is true, which indicates that NULL sessions are to be denied access to all LAN Manager resources (ipc$ appears to be an excep​tion). You can add this value and set it to false if you want to turn this fea​ture off.
 Alternatively, you can leave this setting on, and open holes for NULL sessions at individual share points or pipes by adjusting the following MULTI_SZ registry values: NullSessionPipes and NullSessionShares.

These are simply lists of resource names that NULL sessions may access (the DACL on the resource still needs to grant access to the NULL session; this is commonly done via the Everyone SID).

Programmatically establishing a use record that uses a NULL session is quite easy:

_establishUseRecord(L"\\\\BobsMachine\\IPC$", L" " , L" " , L" ");

Dealing with Conflict

What if you try to establish a use record with a certain set of credentials (a NULL session is just one example) but there's a conflicting use record already established? You have two choices: the brute-force method, and a somewhat twisted but elegant method. Brute force is simply deleting the existing use record, potentially creating horrible race conditions with other processes, or, even worse, orphaning open file handles by specifying use_lots_of_force.

The second option is to give yourself a new sandbox to play in. As a TCP/IP programmer, when you want a private client connection to a server, you use a new, dynamically assigned client-side port. With SMB, the equivalent of a client-side port is a logon session, so if you can create a new logon session (directly or indirectly), you have your own private world where you can create lmsessions to your heart's content, satisfied that you won't conflict with any​body else.

Imagine, for instance, creating a dummy local account and calling LogonUser to establish a logon session for that account just to get yourself a new SMB "port." After impersonating this logon session, your thread now has a new "port" and can call NetUseAdd to specify the real credentials that you want to use across the wire (it could even be a NULL session). What's neat about this approach is that you won't kick anybody else in the head on the local machine by stomping on their lmsessions and use records. Hey, I warned you up front that it was somewhat twisted!

Drive Letter Mappings

If you understood the description of lmsessions and use records, then this chap​ter has done its job. However much I hate to even think about drive mappings (except in the past tense), enough software in the world still relies on this DOS legacy that I'd be remiss not to mention the issue.

Many of the observations made so far in this chapter come from little hints in the documentation and tons of experimentation. From what I can tell with the experimentation I've done with drive mappings, when you establish a drive mapping you are doing two orthogonal things simultaneously (which often con​fuses people). First, you are establishing a use record, with all the semantics that this entails. Drive mappings are nothing special in this regard; each use record still is confined to its creator's logon session, and only a single set of cre​dentials may be used for each association between a client logon session and a server host. Second, you are establishing a machine-wide alias
 for the corre​sponding UNC path. All logon sessions on the machine see the same set of drive mapping aliases, but each logon session has its own set of lmsessions.

Let's look at an example. Say that a daemon, Quux, is logged on as a ser​vice on AlicesMachine. Quux establishes a drive mapping, redirecting the X drive to point to \\BobsMachine\ShareForQuux. Quux will have its own private lmsession to this resource, and when it uses the X drive mapping, Imserver on BobsMachine will see Quux making those requests. No problem.

Now let's say that Alice logs on interactively (think new logon session) and decides to use drive X (she won't be able to see it via the net use command, but the drive mapping alias is available nonetheless). Alice's logon session does not yet have an lmsession to BobsMachine because she just logged on (assume there are no persistent connections; I'll cover those shortly). When Alice uses drive X, because she has no use record for BobsMachine, the system will sim​ply map X to the UNC path \\BobsMachine\ShareForQuux, set up an implicit lmsession to BobsMachine authenticated using Alice's credentials, and attempt to access the resource on her behalf. If ShareForQuux doesn't grant access to Alice, she'll be denied.

When using drive letter mappings from an interactive logon session where the interactive user's profile is available, these mappings can be made persis​tent, which simply means that they will be automatically reestablished the next time the user logs in interactively:

net use x: \\BobsMachine\c$ /p:yes /u:user@foo.com *

The /p:yes switch indicates to NET.EXE that this is a persistent connection.
 Besides all the other stuff that normally goes on as a result of mapping a drive letter, this also causes a new key to be created in the user's profile (hkey_current_user\network\x in this case) named after the device name, which contains the target UNC path and the authority and principal names (but not the password) of the client-side credentials to be used to set up the use record. The next time the user logs in, Winlogon runs a program called userinit.exe, which puts up that (somewhat annoying) little dialog that tells you that it's trying to reestablish your persistent network connections. All this program is doing is walking through the registry setting up use records and drive letter aliases. If you've specified alternate credentials, you'll have to wait while the system attempts to authenticate using the alternate authority/principal pair but with your current password (which usually won't work) before you are prompted for a correct password for the principal.

I can't imagine a modern distributed application needing to use drive letter mappings in the first place, let alone setting up persistent connections programmatically (this is something the end user should manage). But if you're writing a utility that does this sort of thing, you'll want to check out the WNetAddConnection2 function. This function basically does the work of NetUseAdd and optionally adds the persistent connection registry key men​tioned earlier.

Named Pipes

Named pipes (and mailslots, which are similar, security-wise) are all about hooking into the SMB infrastructure in Windows and using it to perform interprocess communication, which may or may not include network communica​tion. If you're using this technology in your distributed system, clearly you should have a very good grasp of all the concepts introduced in this chapter – lmsessions, use records, and so forth – because they all apply to you. As a named pipe server, your service is seen by the world as if you were simply a file; all your communications are funneled through lmclient and lmserver, using (typically authenticated) lmsessions.

When a client sets up a use record with a set of explicit credentials (or even if he or she uses the default credentials), those credentials will be used to set up the lmsession between the client's logon session and a server, and all files, printers, and pipes on that server will be accessed using those same creden​tials. Use records can quickly become tricky to manage because they are global resources in the client's logon session; if you're not careful, processes can start to fight over them. RPC and COM benefit from divorcing themselves from SMB (although it is possible to use RPC over SMB; this is the way many of the administrative tools in Windows work
). In RPC and COM, the authentication settings are much more fine grained, as discussed in Chapter 9.

A named pipe server calls CreateNamedPipe to expose a named pipe, and although most of the arguments to this function have nothing to do with security, the last argument certainly does:

HANDLE CreateNamedPipe(

LPCTSTR lpName,

// in

DWORD dwOpenMode,

// in

DWORD dwPipeMode,

// in

DWORD nMaxInstances,

// in

DWORD nOutBufferSize,

// in

DWORD nlnBufferSize,

// in

DWORD nDefaultTimeOut,

// in

LPSECURITY_ATTRIBUTES lpSecurityAttributes);
// in, optional

The security descriptor specified via lpSecurityAttributes is important: it determines who is allowed to access the pipe. The lmserver component will per​form automatic access checks on your behalf based on the DACL you've spec​ified here. If you don't specify a DACL, you'll get the default DACL in your token, which, unless you've changed it, will only allow you and the System logon ses​sion to access the pipe, which is probably not what you want. Check out Chap​ter 6 for details on setting up a security descriptor.

Once the named pipe is created, a client can connect to it by calling CreateFile:
HANDLE CreateFile(

LPCTSTR ipFileName,

// in

DWORD dwDesiredAccess,

// in

DWORD dwShareMode,

// in

LPSECURITY_ATTRIBUTES ipSecurityAttributes,
// in, optional

DWORD dwCreationDisposition,

// in

DWORD dwFlagsAndAttributes,

// in

HANDLE hTemplateFile);

// in, optional

Most developers are intimately familiar with this function, but when used with a named pipe, there are some security-related flags that are worth men​tioning. These flags are specified via the dwFlagsAndAttributes parameter, and are known as the security quality-of-service options:

SECURITY_ANONYMOUS

SECURITY_IDENTIFICATION

SECURITY_IMPERSONATION

SECURITY_DELEGATION

SECURITY_CONTEXT_TRACKING

SECURITY_EFFECTIVE_ONLY

If you read Chapter 4, the first four flags should ring a bell; this is the level of trust the client (who is opening a named pipe) places in the server he or she is authenticating with. The server (as we'll see) will be able to impersonate the client; by controlling this level of trust, the client controls the strength of secu​rity context available to the server.

The next flag, security_context_tracking, is a rather odd beast, and I really had to dig to find any documentation on it. It turns out that it only works with the local interprocess communication transport. (If the client specifies a machine name other than ".", this flag is ignored.) When this flag is set, each outgoing call from the client is sensitive to the current security context of the client. That is, when the server impersonates the client, the server will always see the client's current security context. If the client opens a pipe and sends a message while impersonating Alice, the server sees Alice. If the client starts impersonating Aaron and sends another message through the same pipe handle, the server now sees Aaron. This is very similar to the way dynamic cloaking works in COM, as is shown in Chapter 9. This is clearly incompatible with the way lmsessions work (one set of credentials is used to authenticate the connection, period), which is the reason for the restriction that the flag only works with the IPC transport (which short-circuits the nor​mal lmsession mechanism).

As with the previous flag, security_effective_only is only imple​mented by the local interprocess communication transport. This flag allows the client to restrict the server's use of his or her privileges quite severely. The only privileges that will appear in the token that the server obtains after authenti​cating the client will be those privileges that were actually enabled in the client's token at authentication time.

One final note: If you decide to specify any of these flags, you must indi​cate that you are specifying security information via yet another flag – SECURITY_SQOS_PRESENT.

SMB Signing

Recall that after an authentication handshake, the client and server discover a shared session key that can be used for sealing or signing messages that they send to one another. SMB supports this feature
, and you can control whether SMB traffic is signed or not via the security policy editor in Windows 2000. Unfortunately, there is a single setting for the entire machine, so a single appli​cation cannot adjust this setting without affecting other applications.

There are basically two settings on both the client and the server side, resulting in four possible permutations per entity (one of which is meaningless). For instance, the settings on the client side are as follows:
· Digitally sign client communication (when possible)
· Digitally sign client communication (always)

If the first setting is enabled, SMB signing is enabled; the client prefers to sign SMB traffic as long as the server supports it. Enabling the second setting only makes sense if the first setting is also enabled, and this goes one step fur​ther: It requires the server to support SMB signing; otherwise, the SMB nego​tiation will fail. This results in the client having three effective states for SMB signing: required, enabled, or disabled.

On the server side, a similar pair of settings is available:

· Digitally sign server communication (when possible)
· Digitally sign server communication (always)

This results in the server also having three effective states for SMB signing: required, enabled, or disabled. Table 8.1 shows what happens in each of the possible combination of cases. The OK column specifies whether the SMB connection will be estab​lished, and the Signed column indicates whether the resulting SMB traffic will be signed.

The Windows 2000 policy editor really just adjusts a couple of registry set​tings (documented in Knowledge Base article Q161372). You can adjust these registry settings directly if you're running an earlier version of Windows.

Table 8.1. SMB Signing

	Client
	Server
	OK?
	Signed?

	Disabled
	Disabled
	Yes
	No

	Enabled
	Disabled
	Yes
	No

	Required
	Disabled
	No
	-

	Disabled
	Enabled
	Yes
	No

	Enabled
	Enabled
	Yes
	Yes

	Required
	Enabled
	Yes
	Yes

	Disabled
	Required
	No
	-

	Enabled
	Required
	Yes
	Yes

	Required
	Required
	Yes
	Yes

Summary

· Spending some time to understand the file server can help you build more robust distributed systems, and it can also help you understand how to use Windows more effectively from day to day.

· The file server is session oriented.

· At most one Lan Manager session may exist between a client logon session and a server machine. However, because multiple client-side logon sessions may exist simultaneously, multiple lmsessions may therefore exist between a client machine and a server machine.

· Each lmsession can use an alternate set of credentials to communi​cate with the file server.

· Client-side "use records" allow you to set up alternate credentials or drive mappings.

· One interesting application of a use record is to set up a NULL session with a server.

· net.exe is your friend.

· Drive mappings are nothing more than a client-side use record plus a machine-wide alias from a drive letter to a UNC path.

· SMB signing allows a client machine and server machine to negotiate use of a session key for signing SMB traffic.

� This draft expired six months later, and as of this writing, no further progress in IETF has been made (and no plans have been announced). Regardless, if you want to get information about SMB in MSDN, you should search for CIFS. If you really want to know how SMB works, spend some time at http://www.samba.org, where a group of very smart programmers have basically reverse-engineered much of LAN Manager into an open-source product that runs on UNIX.

� Of course, I'm assuming you're not using a FAT file system, which is possible but not very inter�esting for this discussion.

� Knowledge Base article Q138365 describes a previously undocumented registry parameter named AutoDisconnect as controlling the number of minutes an lmsession must be idle before it is closed. This appears to apply to lmsessions' setup in the presence of an explicit client-side use record (use records are discussed shortly). This does not appear to control implicit lmsessions con�structed without a use record. My own personal experiments on Windows 2000 indicate that implicit lmsessions are often terminated after as little as ten seconds of idle time.

� A UNC machine name is always prepended with two backslashes (for example, \\BobsMachine). Most of the LAN Manager APIs require this type of machine name.

� One easy way to launch this snap-in is to right-click My Computer and choose Manage.

� If you're feeling brave (and you're an administrator on the remote machine), close that connec�tion and you'll get the RPC error described earlier.

� I'm not sure if Tim Ewald came up with this originally or not, but it sure was a great diagram, Tim.

� Note that this is my own terminology. The MSDN documentation refers to this as a connection, which is sort of misleading; a use record can exist without any SMB connection active at all. Please bear with me, and once you understand the basic model of how LAN Manager works, you can call these things whatever you want.

� I'm only using this as an example that most people can relate to; generally, you'll want to avoid mapping drive letters programmatically from your software products. Drive letter mappings should normally be managed by the administrator of a machine, where they are generally either used as a convenience for interactive use or as a crutch for legacy software that doesn't know about UNC paths.

� The format of the user name in the following commands follows the Windows 2000 convention known as UPN (User Principal Name). For earlier versions of Windows NT, use the older Authority\Principal naming convention.

� Thanks to Mike Nelson for pointing out a twisted way to get more than one connection between a client logon session and a server machine: Use a different host name string for the server (e.g., use the dotted-decimal IP address for the first, and the DNS name for the second). This doesn't scale very well, but it certainly was clever!

� Also, net.exe is incredibly useful. I never use the network neighborhood browser; it's just too darn slow. With net.exe, I can immediately connect with the server of my choice. As a hardcore Windows user, you should spend some time getting familiar with this tool, especially if you eschew the GUI tools and crave a command-line interface.

� Technically, the reason that I use ipc$ is because with any other resource name Imserver performs an access check against the DACL on the chosen resource. Thus it's possible for NetUseAdd to return error_access_denied in this case. Since I'm just setting up a logical connection to a particular machine, I prefer to set up the use record in peace (sans any access checks on a particular resource), and then allow each piece of code that accesses individual resources to handle this on a case-by-case basis.

� The reference count is mainly an annoyance in my opinion; presumably, in early versions of LAN Manager it was useful.

� More fine-grained ways of granting and denying access to NULL sessions are discussed in Chap�ter 7, using the Authenticated Users SID introduced in Windows NT 4 Service Pack 3.

� For terminal services, this would be a terminal services session-wide alias, naturally.

� This is the default setting whenever you map a drive letter via net.exe, so technically, I didn't even need to say /p:yes. The /p:no switch causes the drive mapping not to be persis�tent (and thus it doesn't write any information to the user profile).

� Note that connecting to a named pipe via a machine name of "." (for instance, "\V\pipe\mypipe") appears to cause the system to use a different transport (specifically, the local interprocess communication transport), which doesn't use SMB. This is purely based on experimentation and hints left in MSDN here and there.

� This is a trick I've used quite often when administering domains in Windows NT 4. If I happen to be working at a machine that's connected to the network but is not a member of the domain I'd like to muck with (and thus I cannot log into the machine using my domain credentials), I simply set up a use record with the remote domain controller using my domain credentials so that when� ever I run any of the administrative tools, such as User Manager, Server Manager, or the Registry Editor (connecting to a remote registry), these tools will use the credentials I specified in my use record. (I always am careful to delete the use record before I leave the workstation.) net.exe is your friend in more ways than one.

� On Windows 2000, I've successfully gotten the first three impersonation levels to work across the wire, but CreateFile failed mysteriously each time I tried to use delegation-level impersonation.

� As of Windows NT 4 Service Pack 3.

PAGE
18

